Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
12506.c2 12506.c \( 2 \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $49.62685718$ $[1, -1, 0, 18302246, 54487812276]$ \(y^2+xy=x^3-x^2+18302246x+54487812276\) 7.8.0.a.1, 91.48.0.?, 296.2.0.?, 2072.16.0.?, 26936.96.2.? $[(-571182222497435805879/771978401, 87589820078604572488723309877598/771978401)]$
12506.d2 12506.d \( 2 \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.221058494$ $[1, -1, 1, 108297, 24776015]$ \(y^2+xy+y=x^3-x^2+108297x+24776015\) 7.16.0-7.a.1.1, 91.48.0.?, 296.2.0.?, 2072.32.0.?, 26936.96.2.? $[(75, 5734)]$
100048.e2 100048.e \( 2^{4} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.145479482$ $[0, 0, 0, 1732757, -1587397734]$ \(y^2=x^3+1732757x-1587397734\) 7.8.0.a.1, 28.16.0-7.a.1.2, 91.24.0.?, 296.2.0.?, 364.48.0.?, $\ldots$ $[(2106, 106782)]$
100048.f2 100048.f \( 2^{4} \cdot 13^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 292835933, -3487512821598]$ \(y^2=x^3+292835933x-3487512821598\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 364.48.0.?, 2072.16.0.?, $\ldots$ $[ ]$
112554.g2 112554.g \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.963326410$ $[1, -1, 0, 974676, -669927088]$ \(y^2+xy=x^3-x^2+974676x-669927088\) 7.8.0.a.1, 21.16.0-7.a.1.1, 91.24.0.?, 273.48.0.?, 296.2.0.?, $\ldots$ $[(553, 5884)]$
112554.t2 112554.t \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $9.772511791$ $[1, -1, 1, 164720212, -1471335651665]$ \(y^2+xy+y=x^3-x^2+164720212x-1471335651665\) 7.8.0.a.1, 91.24.0.?, 273.48.0.?, 296.2.0.?, 2072.16.0.?, $\ldots$ $[(87835, 26236055)]$
312650.o2 312650.o \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $32.15653498$ $[1, -1, 0, 2707433, 3099709341]$ \(y^2+xy=x^3-x^2+2707433x+3099709341\) 7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 296.2.0.?, 455.48.0.?, $\ldots$ $[(78361692298483/109849, 715047773228717288467/109849)]$
312650.ce2 312650.ce \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $12.93096536$ $[1, -1, 1, 457556145, 6811434090647]$ \(y^2+xy+y=x^3-x^2+457556145x+6811434090647\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 455.48.0.?, 2072.16.0.?, $\ldots$ $[(142715959/55, 1917755781338/55)]$
400192.s2 400192.s \( 2^{6} \cdot 13^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1171343732, 27900102572784]$ \(y^2=x^3+1171343732x+27900102572784\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ $[ ]$
400192.t2 400192.t \( 2^{6} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $35.67899878$ $[0, 0, 0, 1171343732, -27900102572784]$ \(y^2=x^3+1171343732x-27900102572784\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ $[(2290397416409628704/5758003, 3734634229012264923994660764/5758003)]$
400192.u2 400192.u \( 2^{6} \cdot 13^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 6931028, -12699181872]$ \(y^2=x^3+6931028x-12699181872\) 7.8.0.a.1, 56.16.0-7.a.1.4, 91.24.0.?, 296.2.0.?, 518.16.0.?, $\ldots$ $[ ]$
400192.v2 400192.v \( 2^{6} \cdot 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $67.82413700$ $[0, 0, 0, 6931028, 12699181872]$ \(y^2=x^3+6931028x+12699181872\) 7.8.0.a.1, 56.16.0-7.a.1.3, 91.24.0.?, 296.2.0.?, 728.48.0.?, $\ldots$ $[(357231500244064091636189066916/9680222727305, 278888228717819545166118117681834075751498536/9680222727305)]$
462722.e2 462722.e \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $94.56598462$ $[1, -1, 0, 148259021, 1256313832437]$ \(y^2+xy=x^3-x^2+148259021x+1256313832437\) 7.8.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ $[(3721501281385665580467489400057522659773277/8540518911473888516, 7397841108626976939161091172580962012894656852012431723315841921/8540518911473888516)]$
462722.m2 462722.m \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 25055774517, 2760196657187675]$ \(y^2+xy+y=x^3-x^2+25055774517x+2760196657187675\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ $[ ]$
  displayed columns for results