Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
12506.c2 |
12506a2 |
12506.c |
12506a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 13^{10} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$49.62685718$ |
$1$ |
|
$0$ |
$1589952$ |
$3.332020$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$6.67437$ |
$[1, -1, 0, 18302246, 54487812276]$ |
\(y^2+xy=x^3-x^2+18302246x+54487812276\) |
7.8.0.a.1, 91.48.0.?, 296.2.0.?, 2072.16.0.?, 26936.96.2.? |
$[(-571182222497435805879/771978401, 87589820078604572488723309877598/771978401)]$ |
12506.d2 |
12506d2 |
12506.d |
12506d |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.16.0.2 |
7B.2.3 |
$26936$ |
$96$ |
$2$ |
$0.221058494$ |
$1$ |
|
$4$ |
$122304$ |
$2.049545$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.04307$ |
$[1, -1, 1, 108297, 24776015]$ |
\(y^2+xy+y=x^3-x^2+108297x+24776015\) |
7.16.0-7.a.1.1, 91.48.0.?, 296.2.0.?, 2072.32.0.?, 26936.96.2.? |
$[(75, 5734)]$ |
100048.e2 |
100048k2 |
100048.e |
100048k |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \cdot 37 \) |
\( - 2^{19} \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1.145479482$ |
$1$ |
|
$2$ |
$2935296$ |
$2.742691$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$4.85468$ |
$[0, 0, 0, 1732757, -1587397734]$ |
\(y^2=x^3+1732757x-1587397734\) |
7.8.0.a.1, 28.16.0-7.a.1.2, 91.24.0.?, 296.2.0.?, 364.48.0.?, $\ldots$ |
$[(2106, 106782)]$ |
100048.f2 |
100048e2 |
100048.f |
100048e |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \cdot 37 \) |
\( - 2^{19} \cdot 13^{10} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$16$ |
$2$ |
$0$ |
$38158848$ |
$4.025169$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$6.19135$ |
$[0, 0, 0, 292835933, -3487512821598]$ |
\(y^2=x^3+292835933x-3487512821598\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 364.48.0.?, 2072.16.0.?, $\ldots$ |
$[ ]$ |
112554.g2 |
112554f2 |
112554.g |
112554f |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$80808$ |
$96$ |
$2$ |
$0.963326410$ |
$1$ |
|
$4$ |
$3913728$ |
$2.598850$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$4.65711$ |
$[1, -1, 0, 974676, -669927088]$ |
\(y^2+xy=x^3-x^2+974676x-669927088\) |
7.8.0.a.1, 21.16.0-7.a.1.1, 91.24.0.?, 273.48.0.?, 296.2.0.?, $\ldots$ |
$[(553, 5884)]$ |
112554.t2 |
112554s2 |
112554.t |
112554s |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{10} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$80808$ |
$96$ |
$2$ |
$9.772511791$ |
$1$ |
|
$2$ |
$50878464$ |
$3.881325$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.98026$ |
$[1, -1, 1, 164720212, -1471335651665]$ |
\(y^2+xy+y=x^3-x^2+164720212x-1471335651665\) |
7.8.0.a.1, 91.24.0.?, 273.48.0.?, 296.2.0.?, 2072.16.0.?, $\ldots$ |
$[(87835, 26236055)]$ |
312650.o2 |
312650o2 |
312650.o |
312650o |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 5^{6} \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$134680$ |
$96$ |
$2$ |
$32.15653498$ |
$1$ |
|
$0$ |
$17122560$ |
$2.854263$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$4.52331$ |
$[1, -1, 0, 2707433, 3099709341]$ |
\(y^2+xy=x^3-x^2+2707433x+3099709341\) |
7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 296.2.0.?, 455.48.0.?, $\ldots$ |
$[(78361692298483/109849, 715047773228717288467/109849)]$ |
312650.ce2 |
312650ce2 |
312650.ce |
312650ce |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{7} \cdot 5^{6} \cdot 13^{10} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$134680$ |
$96$ |
$2$ |
$12.93096536$ |
$1$ |
|
$0$ |
$222593280$ |
$4.136734$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.73961$ |
$[1, -1, 1, 457556145, 6811434090647]$ |
\(y^2+xy+y=x^3-x^2+457556145x+6811434090647\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 455.48.0.?, 2072.16.0.?, $\ldots$ |
$[(142715959/55, 1917755781338/55)]$ |
400192.s2 |
400192s2 |
400192.s |
400192s |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \cdot 37 \) |
\( - 2^{25} \cdot 13^{10} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$305270784$ |
$4.371742$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.84839$ |
$[0, 0, 0, 1171343732, 27900102572784]$ |
\(y^2=x^3+1171343732x+27900102572784\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ |
$[ ]$ |
400192.t2 |
400192t2 |
400192.t |
400192t |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \cdot 37 \) |
\( - 2^{25} \cdot 13^{10} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$35.67899878$ |
$1$ |
|
$0$ |
$305270784$ |
$4.371742$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.84839$ |
$[0, 0, 0, 1171343732, -27900102572784]$ |
\(y^2=x^3+1171343732x-27900102572784\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ |
$[(2290397416409628704/5758003, 3734634229012264923994660764/5758003)]$ |
400192.u2 |
400192u2 |
400192.u |
400192u |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \cdot 37 \) |
\( - 2^{25} \cdot 13^{4} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$23482368$ |
$3.089264$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$4.65536$ |
$[0, 0, 0, 6931028, -12699181872]$ |
\(y^2=x^3+6931028x-12699181872\) |
7.8.0.a.1, 56.16.0-7.a.1.4, 91.24.0.?, 296.2.0.?, 518.16.0.?, $\ldots$ |
$[ ]$ |
400192.v2 |
400192v2 |
400192.v |
400192v |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \cdot 37 \) |
\( - 2^{25} \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$67.82413700$ |
$1$ |
|
$0$ |
$23482368$ |
$3.089264$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$4.65536$ |
$[0, 0, 0, 6931028, 12699181872]$ |
\(y^2=x^3+6931028x+12699181872\) |
7.8.0.a.1, 56.16.0-7.a.1.3, 91.24.0.?, 296.2.0.?, 728.48.0.?, $\ldots$ |
$[(357231500244064091636189066916/9680222727305, 278888228717819545166118117681834075751498536/9680222727305)]$ |
462722.e2 |
462722e2 |
462722.e |
462722e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{7} \cdot 13^{4} \cdot 37^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$94.56598462$ |
$1$ |
|
$0$ |
$167311872$ |
$3.855003$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.30795$ |
$[1, -1, 0, 148259021, 1256313832437]$ |
\(y^2+xy=x^3-x^2+148259021x+1256313832437\) |
7.8.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ |
$[(3721501281385665580467489400057522659773277/8540518911473888516, 7397841108626976939161091172580962012894656852012431723315841921/8540518911473888516)]$ |
462722.m2 |
462722m2 |
462722.m |
462722m |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{7} \cdot 13^{10} \cdot 37^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2175054336$ |
$5.137474$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$6.48770$ |
$[1, -1, 1, 25055774517, 2760196657187675]$ |
\(y^2+xy+y=x^3-x^2+25055774517x+2760196657187675\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ |
$[ ]$ |