Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-41626x-2946236\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-41626xz^2-2946236z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-53947971x-136650370626\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-99, 515)$ | $3.0217409563814928757460274796$ | $\infty$ |
$(-148, 74)$ | $0$ | $2$ |
Integral points
\( \left(-148, 74\right) \), \( \left(-99, 515\right) \), \( \left(-99, -416\right) \), \( \left(336, 4430\right) \), \( \left(336, -4766\right) \)
Invariants
Conductor: | $N$ | = | \( 462462 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $910388956228752$ | = | $2^{4} \cdot 3 \cdot 7^{7} \cdot 11^{6} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{38272753}{4368} \) | = | $2^{-4} \cdot 3^{-1} \cdot 7^{-1} \cdot 13^{-1} \cdot 337^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6027281845174291145648079152$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.56917452640941281001884024550$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8417420159340571$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3365543333740386$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.0217409563814928757460274796$ |
|
Real period: | $\Omega$ | ≈ | $0.33672287771741388429435366430$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot1\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.0699572421973868301007512282 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.069957242 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.336723 \cdot 3.021741 \cdot 16}{2^2} \\ & \approx 4.069957242\end{aligned}$$
Modular invariants
Modular form 462462.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 2949120 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 24024 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 9472 & 10923 \\ 18205 & 19658 \end{array}\right),\left(\begin{array}{rr} 23396 & 4367 \\ 21505 & 21834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 20483 & 13926 \\ 23210 & 4643 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 24018 & 24019 \end{array}\right),\left(\begin{array}{rr} 7921 & 7920 \\ 286 & 5743 \end{array}\right),\left(\begin{array}{rr} 19655 & 0 \\ 0 & 24023 \end{array}\right),\left(\begin{array}{rr} 24017 & 8 \\ 24016 & 9 \end{array}\right),\left(\begin{array}{rr} 848 & 10923 \\ 18821 & 19658 \end{array}\right)$.
The torsion field $K:=\Q(E[24024])$ is a degree-$1071246842265600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24024\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 231231 = 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 154154 = 2 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9438 = 2 \cdot 3 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $62$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 35574 = 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 462462r
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 546g1, its twist by $77$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.