Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-58312888300x+5420199028082000\)
|
(homogenize, simplify) |
\(y^2z=x^3-58312888300xz^2+5420199028082000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-58312888300x+5420199028082000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 462400 \) | = | $2^{6} \cdot 5^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-1185878764970000000000000000000$ | = | $-1 \cdot 2^{19} \cdot 5^{19} \cdot 17^{9} $ |
|
j-invariant: | $j$ | = | \( -\frac{45145776875761017}{2441406250} \) | = | $-1 \cdot 2^{-1} \cdot 3^{3} \cdot 5^{-13} \cdot 118691^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.8374495841528693427689419542$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.86809984905373913115556314199$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.082527750146711$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.591516408905115$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.025873052052603162490556053419$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.3117506627332047987911748377 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 3.311750663 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.025873 \cdot 1.000000 \cdot 32}{1^2} \\ & \approx 3.311750663\end{aligned}$$
Modular invariants
Modular form 462400.2.a.ix
For more coefficients, see the Downloads section to the right.
Modular degree: | 2541846528 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$5$ | $4$ | $I_{13}^{*}$ | additive | 1 | 2 | 19 | 13 |
$17$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$13$ | 13B.5.2 | 13.42.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8840 = 2^{3} \cdot 5 \cdot 13 \cdot 17 \), index $336$, genus $9$, and generators
$\left(\begin{array}{rr} 2225 & 4446 \\ 8424 & 4889 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 871 & 1431 \end{array}\right),\left(\begin{array}{rr} 6232 & 8827 \\ 4589 & 8692 \end{array}\right),\left(\begin{array}{rr} 3522 & 8827 \\ 1781 & 12 \end{array}\right),\left(\begin{array}{rr} 4406 & 8827 \\ 6643 & 12 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right),\left(\begin{array}{rr} 8815 & 26 \\ 8814 & 27 \end{array}\right),\left(\begin{array}{rr} 8826 & 8827 \\ 4433 & 12 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[8840])$ is a degree-$4504934154240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 425 = 5^{2} \cdot 17 \) |
$5$ | additive | $18$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
$17$ | additive | $98$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
13.
Its isogeny class 462400.ix
consists of 2 curves linked by isogenies of
degree 13.
Twists
The minimal quadratic twist of this elliptic curve is 2890.l1, its twist by $-680$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.