Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2890.a1 |
2890d2 |
2890.a |
2890d |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$18.03619879$ |
$1$ |
|
$0$ |
$551616$ |
$2.993011$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$8.01200$ |
$[1, -1, 0, -36445555, -84681498425]$ |
\(y^2+xy=x^3-x^2-36445555x-84681498425\) |
13.42.0.a.1, 221.168.2.?, 520.84.2.?, 680.2.0.?, 8840.336.9.? |
$[(3470820551/611, 139555175287800/611)]$ |
2890.l1 |
2890j2 |
2890.l |
2890j |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$32448$ |
$1.576403$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.87882$ |
$[1, -1, 0, -126109, -17206537]$ |
\(y^2+xy=x^3-x^2-126109x-17206537\) |
13.42.0.a.1, 221.168.2.?, 520.84.2.?, 680.2.0.?, 8840.336.9.? |
$[ ]$ |
14450.q1 |
14450bc2 |
14450.q |
14450bc |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{19} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$12.89778036$ |
$1$ |
|
$0$ |
$778752$ |
$2.381123$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.89918$ |
$[1, -1, 1, -3152730, -2153969853]$ |
\(y^2+xy+y=x^3-x^2-3152730x-2153969853\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1105.168.2.?, $\ldots$ |
$[(10911/2, 770335/2), (434269/4, 284678305/4)]$ |
14450.bl1 |
14450ba2 |
14450.bl |
14450ba |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{19} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$169$ |
$13$ |
$0$ |
$13238784$ |
$3.797729$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$7.67393$ |
$[1, -1, 1, -911138880, -10586098442003]$ |
\(y^2+xy+y=x^3-x^2-911138880x-10586098442003\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1105.168.2.?, $\ldots$ |
$[ ]$ |
23120.c1 |
23120bn2 |
23120.c |
23120bn |
$2$ |
$13$ |
\( 2^{4} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$0.081788718$ |
$1$ |
|
$10$ |
$778752$ |
$2.269550$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.49002$ |
$[0, 0, 0, -2017747, 1103236114]$ |
\(y^2=x^3-2017747x+1103236114\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 884.168.2.?, $\ldots$ |
$[(2193, 85000)]$ |
23120.bm1 |
23120u2 |
23120.bm |
23120u |
$2$ |
$13$ |
\( 2^{4} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{13} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13238784$ |
$3.686157$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$7.18175$ |
$[0, 0, 0, -583128883, 5420199028082]$ |
\(y^2=x^3-583128883x+5420199028082\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 884.168.2.?, $\ldots$ |
$[ ]$ |
26010.bn1 |
26010bn2 |
26010.bn |
26010bn |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$11.69954313$ |
$1$ |
|
$0$ |
$454272$ |
$2.125710$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.25662$ |
$[1, -1, 1, -1134983, 465711481]$ |
\(y^2+xy+y=x^3-x^2-1134983x+465711481\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 663.168.2.?, 680.2.0.?, $\ldots$ |
$[(78131/26, 321180521/26)]$ |
26010.bo1 |
26010bz2 |
26010.bo |
26010bz |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{13} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$7722624$ |
$3.542316$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.92875$ |
$[1, -1, 1, -328009997, 2286728467471]$ |
\(y^2+xy+y=x^3-x^2-328009997x+2286728467471\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 663.168.2.?, 680.2.0.?, $\ldots$ |
$[ ]$ |
92480.f1 |
92480bj2 |
92480.f |
92480bj |
$2$ |
$13$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$12.74355549$ |
$1$ |
|
$0$ |
$6230016$ |
$2.616123$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.18814$ |
$[0, 0, 0, -8070988, -8825888912]$ |
\(y^2=x^3-8070988x-8825888912\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[(2664766/19, 3962874016/19)]$ |
92480.j1 |
92480eg2 |
92480.j |
92480eg |
$2$ |
$13$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{13} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1.724968837$ |
$1$ |
|
$2$ |
$105910272$ |
$4.032730$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.67477$ |
$[0, 0, 0, -2332515532, 43361592224656]$ |
\(y^2=x^3-2332515532x+43361592224656\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[(31212, 982600)]$ |
92480.eg1 |
92480dm2 |
92480.eg |
92480dm |
$2$ |
$13$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$6230016$ |
$2.616123$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.18814$ |
$[0, 0, 0, -8070988, 8825888912]$ |
\(y^2=x^3-8070988x+8825888912\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[ ]$ |
92480.em1 |
92480cg2 |
92480.em |
92480cg |
$2$ |
$13$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{13} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$4$ |
$2$ |
$0$ |
$105910272$ |
$4.032730$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.67477$ |
$[0, 0, 0, -2332515532, -43361592224656]$ |
\(y^2=x^3-2332515532x-43361592224656\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[ ]$ |
115600.a1 |
115600cf2 |
115600.a |
115600cf |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{19} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$317730816$ |
$4.490875$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$7.01860$ |
$[0, 0, 0, -14578222075, 677524878510250]$ |
\(y^2=x^3-14578222075x+677524878510250\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[ ]$ |
115600.dh1 |
115600cc2 |
115600.dh |
115600cc |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{19} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18690048$ |
$3.074268$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.56042$ |
$[0, 0, 0, -50443675, 137904514250]$ |
\(y^2=x^3-50443675x+137904514250\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1768.168.2.?, $\ldots$ |
$[ ]$ |
130050.h1 |
130050en2 |
130050.h |
130050en |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{19} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$10902528$ |
$2.930428$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.35822$ |
$[1, -1, 0, -28374567, 58185560591]$ |
\(y^2+xy=x^3-x^2-28374567x+58185560591\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 3315.168.2.?, $\ldots$ |
$[ ]$ |
130050.dl1 |
130050gd2 |
130050.dl |
130050gd |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{19} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$1$ |
$4$ |
$2$ |
$0$ |
$185342976$ |
$4.347038$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.80182$ |
$[1, -1, 0, -8200249917, 285832858183991]$ |
\(y^2+xy=x^3-x^2-8200249917x+285832858183991\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 3315.168.2.?, $\ldots$ |
$[ ]$ |
141610.a1 |
141610bm2 |
141610.a |
141610bm |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 7^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$61880$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$9345024$ |
$2.549358$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$4.93421$ |
$[1, -1, 0, -6179350, 5914200886]$ |
\(y^2+xy=x^3-x^2-6179350x+5914200886\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1547.168.2.?, $\ldots$ |
$[ ]$ |
141610.bo1 |
141610cx2 |
141610.bo |
141610cx |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 7^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$61880$ |
$336$ |
$9$ |
$3.594689832$ |
$1$ |
|
$0$ |
$158865408$ |
$3.965965$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.36744$ |
$[1, -1, 0, -1785832204, 29049325624178]$ |
\(y^2+xy=x^3-x^2-1785832204x+29049325624178\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 1547.168.2.?, $\ldots$ |
$[(30853/3, 129349858/3)]$ |
208080.h1 |
208080bo2 |
208080.h |
208080bo |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$40.45938133$ |
$1$ |
|
$0$ |
$10902528$ |
$2.818855$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.04324$ |
$[0, 0, 0, -18159723, -29787375078]$ |
\(y^2=x^3-18159723x-29787375078\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 2652.168.2.?, $\ldots$ |
$[(2706492202085064727/12202541, 4317089277837660199797261302/12202541)]$ |
208080.he1 |
208080bk2 |
208080.he |
208080bk |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{13} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$26520$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$185342976$ |
$4.235466$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.43142$ |
$[0, 0, 0, -5248159947, -146345373758214]$ |
\(y^2=x^3-5248159947x-146345373758214\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 2652.168.2.?, $\ldots$ |
$[ ]$ |
349690.bg1 |
349690bg2 |
349690.bg |
349690bg |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 11^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$97240$ |
$336$ |
$9$ |
$44.57999916$ |
$1$ |
|
$0$ |
$772262400$ |
$4.191956$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.12897$ |
$[1, -1, 1, -4409912178, 112724304140187]$ |
\(y^2+xy+y=x^3-x^2-4409912178x+112724304140187\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 2431.168.2.?, $\ldots$ |
$[(41182973600955646617745/1091574168, 1618928518534557359968492171114741/1091574168)]$ |
349690.cx1 |
349690cx2 |
349690.cx |
349690cx |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 11^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$97240$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$45427200$ |
$2.775352$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$4.79724$ |
$[1, -1, 1, -15259212, 22947678361]$ |
\(y^2+xy+y=x^3-x^2-15259212x+22947678361\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 2431.168.2.?, $\ldots$ |
$[ ]$ |
462400.o1 |
462400o2 |
462400.o |
462400o |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{19} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$149520384$ |
$3.420841$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.28831$ |
$[0, 0, 0, -201774700, 1103236114000]$ |
\(y^2=x^3-201774700x+1103236114000\) |
13.42.0.a.1, 221.84.2.?, 442.168.2.?, 520.84.2.?, 680.2.0.?, $\ldots$ |
$[ ]$ |
462400.p1 |
462400p2 |
462400.p |
462400p |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{19} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$89.63290135$ |
$1$ |
|
$0$ |
$2541846528$ |
$4.837448$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.59152$ |
$[0, 0, 0, -58312888300, -5420199028082000]$ |
\(y^2=x^3-58312888300x-5420199028082000\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 884.168.2.?, $\ldots$ |
$[(1129149885802758842123289913076401770135960/1798769526535942753, 752814014054237492702684642747222250802361568527912861004687500/1798769526535942753)]$ |
462400.ix1 |
462400ix2 |
462400.ix |
462400ix |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{19} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2541846528$ |
$4.837448$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.59152$ |
$[0, 0, 0, -58312888300, 5420199028082000]$ |
\(y^2=x^3-58312888300x+5420199028082000\) |
13.42.0.a.1, 221.84.2.?, 442.168.2.?, 520.84.2.?, 680.2.0.?, $\ldots$ |
$[ ]$ |
462400.iy1 |
462400iy2 |
462400.iy |
462400iy |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{19} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$91.57969745$ |
$1$ |
|
$0$ |
$149520384$ |
$3.420841$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$5.28831$ |
$[0, 0, 0, -201774700, -1103236114000]$ |
\(y^2=x^3-201774700x-1103236114000\) |
13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 884.168.2.?, $\ldots$ |
$[(24070141400598634723805578929286171393021/207139597350291411, 3733166286659113404561905301763718461744174916019663951894331/207139597350291411)]$ |
488410.bu1 |
488410bu2 |
488410.bu |
488410bu |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 13^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$45.19447756$ |
$1$ |
|
$0$ |
$1290781440$ |
$4.275482$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$6.04916$ |
$[1, -1, 1, -6159298827, -186063729936171]$ |
\(y^2+xy+y=x^3-x^2-6159298827x-186063729936171\) |
13.42.0.a.1, 221.168.2.?, 520.84.2.?, 680.2.0.?, 8840.336.9.? |
$[(2157290220279758643363/134280106, 67891604506775923971121235692553/134280106)]$ |
488410.de1 |
488410de2 |
488410.de |
488410de |
$2$ |
$13$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{13} \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.42.0.2 |
13B.5.2 |
$8840$ |
$336$ |
$9$ |
$1$ |
$169$ |
$13$ |
$0$ |
$75928320$ |
$2.858879$ |
$-45145776875761017/2441406250$ |
$1.08253$ |
$4.75140$ |
$[1, -1, 1, -21312453, -37866699113]$ |
\(y^2+xy+y=x^3-x^2-21312453x-37866699113\) |
13.42.0.a.1, 221.168.2.?, 520.84.2.?, 680.2.0.?, 8840.336.9.? |
$[ ]$ |