Properties

Label 45968.i
Number of curves $2$
Conductor $45968$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 45968.i have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 45968.i do not have complex multiplication.

Modular form 45968.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{7} - 3 q^{9} - 2 q^{11} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 45968.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45968.i1 45968h1 \([0, 0, 0, -253331, -47503534]\) \(90942871473/3321188\) \(65661911568760832\) \([2]\) \(387072\) \(1.9965\) \(\Gamma_0(N)\)-optimal
45968.i2 45968h2 \([0, 0, 0, 98189, -169059150]\) \(5295319407/627576794\) \(-12407575828358537216\) \([2]\) \(774144\) \(2.3431\)