Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-7219130x-6120887128\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-7219130xz^2-6120887128z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-115506075x-391852282250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1686, 36280)$ | $2.1392908857612590924236495610$ | $\infty$ |
| $(-2061, 1030)$ | $0$ | $2$ |
| $(3039, -1520)$ | $0$ | $2$ |
Integral points
\( \left(-2061, 1030\right) \), \( \left(-1686, 36280\right) \), \( \left(-1686, -34595\right) \), \( \left(-1296, 33160\right) \), \( \left(-1296, -31865\right) \), \( \left(3039, -1520\right) \), \( \left(3715, 133498\right) \), \( \left(3715, -137214\right) \), \( \left(5164, 304480\right) \), \( \left(5164, -309645\right) \), \( \left(12678, 1386496\right) \), \( \left(12678, -1399175\right) \)
Invariants
| Conductor: | $N$ | = | \( 455175 \) | = | $3^{2} \cdot 5^{2} \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $7884243576385484765625$ | = | $3^{10} \cdot 5^{8} \cdot 7^{2} \cdot 17^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{151334226289}{28676025} \) | = | $3^{-4} \cdot 5^{-2} \cdot 7^{-2} \cdot 17^{-2} \cdot 73^{6}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9192082299765771968356147417$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.14857645739736412371284514769$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.023820018784982$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.527813799461002$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1392908857612590924236495610$ |
|
| Real period: | $\Omega$ | ≈ | $0.093313616056958235802249659644$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.3879989871384394671271129190 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $4$ = $2^2$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.387998987 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.093314 \cdot 2.139291 \cdot 128}{4^2} \\ & \approx 6.387998987\end{aligned}$$
Modular invariants
Modular form 455175.2.a.ce
For more coefficients, see the Downloads section to the right.
| Modular degree: | 28311552 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $17$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7140 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 6463 & 2382 \\ 6798 & 4759 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4283 & 4758 \\ 0 & 7139 \end{array}\right),\left(\begin{array}{rr} 3571 & 2382 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4759 & 0 \\ 0 & 7139 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5879 & 2376 \\ 2238 & 4751 \end{array}\right),\left(\begin{array}{rr} 7137 & 4 \\ 7136 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[7140])$ is a degree-$7277201326080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 65025 = 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
| $3$ | additive | $8$ | \( 50575 = 5^{2} \cdot 7 \cdot 17^{2} \) |
| $5$ | additive | $18$ | \( 18207 = 3^{2} \cdot 7 \cdot 17^{2} \) |
| $7$ | split multiplicative | $8$ | \( 65025 = 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
| $17$ | additive | $162$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 455175ce
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1785k2, its twist by $-255$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.