| Label | Cremona label | Class | Cremona class | Class size | Class degree | Conductor | Discriminant | Rank | Torsion | $\textrm{End}^0(E_{\overline\Q})$ | CM | Sato-Tate | Semistable | Potentially good | Nonmax $\ell$ | $\ell$-adic images | mod-$\ell$ images | Adelic level | Adelic index | Adelic genus | Regulator | $Ш_{\textrm{an}}$ | Ш primes | Integral points | Modular degree | Faltings height | j-invariant | $abc$ quality | Szpiro ratio | Weierstrass coefficients | Weierstrass equation | mod-$m$ images | MW-generators | 
      
      
              | 1785.c3 | 1785k2 | 1785.c | 1785k | $4$ | $4$ | \(  3 \cdot 5 \cdot 7 \cdot 17  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 2.6.0.1 | 2Cs | $2380$ | $48$ | $0$ | $0.540768407$ | $1$ |  | $12$ | $512$ | $0.148576$ | $151334226289/28676025$ | $1.02382$ | $3.43825$ | $[1, 0, 0, -111, 360]$ | \(y^2+xy=x^3-111x+360\) | 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 68.12.0-2.a.1.1, 140.24.0.?, $\ldots$ | $[(9, 6)]$ | 
      
              | 5355.r3 | 5355q2 | 5355.r | 5355q | $4$ | $4$ | \(  3^{2} \cdot 5 \cdot 7 \cdot 17  \) | \(  3^{10} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $2.851044715$ | $1$ |  | $4$ | $4096$ | $0.697883$ | $151334226289/28676025$ | $1.02382$ | $3.76604$ | $[1, -1, 0, -999, -9720]$ | \(y^2+xy=x^3-x^2-999x-9720\) | 2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 204.12.0.?, $\ldots$ | $[(120, 1200)]$ | 
      
              | 8925.v3 | 8925d2 | 8925.v | 8925d | $4$ | $4$ | \(  3 \cdot 5^{2} \cdot 7 \cdot 17  \) | \(  3^{4} \cdot 5^{8} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $12288$ | $0.953296$ | $151334226289/28676025$ | $1.02382$ | $3.89149$ | $[1, 1, 0, -2775, 45000]$ | \(y^2+xy=x^3+x^2-2775x+45000\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 12495.c3 | 12495h2 | 12495.c | 12495h | $4$ | $4$ | \(  3 \cdot 5 \cdot 7^{2} \cdot 17  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{8} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $24576$ | $1.121532$ | $151334226289/28676025$ | $1.02382$ | $3.96670$ | $[1, 1, 1, -5440, -128920]$ | \(y^2+xy+y=x^3+x^2-5440x-128920\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 26775.n3 | 26775x2 | 26775.n | 26775x | $4$ | $4$ | \(  3^{2} \cdot 5^{2} \cdot 7 \cdot 17  \) | \(  3^{10} \cdot 5^{8} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $98304$ | $1.502602$ | $151334226289/28676025$ | $1.02382$ | $4.11870$ | $[1, -1, 1, -24980, -1239978]$ | \(y^2+xy+y=x^3-x^2-24980x-1239978\) | 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 340.12.0.?, 420.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 28560.e3 | 28560cf2 | 28560.e | 28560cf | $4$ | $4$ | \(  2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $2$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $2380$ | $48$ | $0$ | $2.197501599$ | $1$ |  | $27$ | $32768$ | $0.841723$ | $151334226289/28676025$ | $1.02382$ | $3.31982$ | $[0, -1, 0, -1776, -23040]$ | \(y^2=x^3-x^2-1776x-23040\) | 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 68.12.0-2.a.1.1, 140.24.0.?, $\ldots$ | $[(-24, 72), (-16, 32)]$ | 
      
              | 30345.f3 | 30345m2 | 30345.f | 30345m | $4$ | $4$ | \(  3 \cdot 5 \cdot 7 \cdot 17^{2}  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{8}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $147456$ | $1.565184$ | $151334226289/28676025$ | $1.02382$ | $4.14151$ | $[1, 1, 1, -32085, 1800762]$ | \(y^2+xy+y=x^3+x^2-32085x+1800762\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 37485.bd3 | 37485s2 | 37485.bd | 37485s | $4$ | $4$ | \(  3^{2} \cdot 5 \cdot 7^{2} \cdot 17  \) | \(  3^{10} \cdot 5^{2} \cdot 7^{8} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $3.557573721$ | $1$ |  | $4$ | $196608$ | $1.670837$ | $151334226289/28676025$ | $1.02382$ | $4.17880$ | $[1, -1, 0, -48960, 3431875]$ | \(y^2+xy=x^3-x^2-48960x+3431875\) | 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 340.12.0.?, 420.24.0.?, $\ldots$ | $[(-10, 1985)]$ | 
      
              | 62475.cm3 | 62475bs2 | 62475.cm | 62475bs | $4$ | $4$ | \(  3 \cdot 5^{2} \cdot 7^{2} \cdot 17  \) | \(  3^{4} \cdot 5^{8} \cdot 7^{8} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $2380$ | $48$ | $0$ | $3.788969932$ | $1$ |  | $4$ | $589824$ | $1.926250$ | $151334226289/28676025$ | $1.02382$ | $4.26305$ | $[1, 0, 1, -136001, -15842977]$ | \(y^2+xy+y=x^3-136001x-15842977\) | 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 68.12.0-2.a.1.2, 140.24.0.?, $\ldots$ | $[(501, 6217)]$ | 
      
              | 85680.dp3 | 85680fi2 | 85680.dp | 85680fi | $4$ | $4$ | \(  2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{12} \cdot 3^{10} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $1.276065537$ | $1$ |  | $13$ | $262144$ | $1.391029$ | $151334226289/28676025$ | $1.02382$ | $3.57905$ | $[0, 0, 0, -15987, 638066]$ | \(y^2=x^3-15987x+638066\) | 2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 204.12.0.?, $\ldots$ | $[(25, 504)]$ | 
      
              | 91035.bi3 | 91035h2 | 91035.bi | 91035h | $4$ | $4$ | \(  3^{2} \cdot 5 \cdot 7 \cdot 17^{2}  \) | \(  3^{10} \cdot 5^{2} \cdot 7^{2} \cdot 17^{8}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $1179648$ | $2.114491$ | $151334226289/28676025$ | $1.02382$ | $4.32032$ | $[1, -1, 0, -288765, -48909344]$ | \(y^2+xy=x^3-x^2-288765x-48909344\) | 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 340.12.0.?, 420.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 114240.fb3 | 114240cd2 | 114240.fb | 114240cd | $4$ | $4$ | \(  2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{18} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $4760$ | $48$ | $0$ | $2.539715124$ | $1$ |  | $9$ | $262144$ | $1.188297$ | $151334226289/28676025$ | $1.02382$ | $3.28175$ | $[0, -1, 0, -7105, 191425]$ | \(y^2=x^3-x^2-7105x+191425\) | 2.6.0.a.1, 40.12.0-2.a.1.1, 56.12.0-2.a.1.1, 136.12.0.?, 140.12.0.?, $\ldots$ | $[(67, 108)]$ | 
      
              | 114240.ji3 | 114240jq2 | 114240.ji | 114240jq | $4$ | $4$ | \(  2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{18} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $4760$ | $48$ | $0$ | $1$ | $1$ |  | $3$ | $262144$ | $1.188297$ | $151334226289/28676025$ | $1.02382$ | $3.28175$ | $[0, 1, 0, -7105, -191425]$ | \(y^2=x^3+x^2-7105x-191425\) | 2.6.0.a.1, 40.12.0-2.a.1.1, 56.12.0-2.a.1.1, 136.12.0.?, 140.12.0.?, $\ldots$ | $[ ]$ | 
      
              | 142800.in3 | 142800bq2 | 142800.in | 142800bq | $4$ | $4$ | \(  2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17  \) | \(  2^{12} \cdot 3^{4} \cdot 5^{8} \cdot 7^{2} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $1.945969713$ | $1$ |  | $9$ | $786432$ | $1.646442$ | $151334226289/28676025$ | $1.02382$ | $3.68324$ | $[0, 1, 0, -44408, -2968812]$ | \(y^2=x^3+x^2-44408x-2968812\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[(-98, 672)]$ | 
      
              | 151725.cx3 | 151725cj2 | 151725.cx | 151725cj | $4$ | $4$ | \(  3 \cdot 5^{2} \cdot 7 \cdot 17^{2}  \) | \(  3^{4} \cdot 5^{8} \cdot 7^{2} \cdot 17^{8}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $2380$ | $48$ | $0$ | $7.346996558$ | $1$ |  | $4$ | $3538944$ | $2.369904$ | $151334226289/28676025$ | $1.02382$ | $4.39224$ | $[1, 0, 1, -802126, 226699523]$ | \(y^2+xy+y=x^3-802126x+226699523\) | 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.2, 68.12.0-2.a.1.1, 140.24.0.?, $\ldots$ | $[(9151, 866756)]$ | 
      
              | 187425.bl3 | 187425bh2 | 187425.bl | 187425bh | $4$ | $4$ | \(  3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17  \) | \(  3^{10} \cdot 5^{8} \cdot 7^{8} \cdot 17^{2}  \) | $2$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $5.310012024$ | $1$ |  | $22$ | $4718592$ | $2.475555$ | $151334226289/28676025$ | $1.02382$ | $4.42022$ | $[1, -1, 1, -1224005, 427760372]$ | \(y^2+xy+y=x^3-x^2-1224005x+427760372\) | 2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 204.12.0.?, $\ldots$ | $[(-26, 21450), (909, 7645)]$ | 
      
              | 199920.hc3 | 199920p2 | 199920.hc | 199920p | $4$ | $4$ | \(  2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17  \) | \(  2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7^{8} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $1$ | $1$ |  | $3$ | $1572864$ | $1.814678$ | $151334226289/28676025$ | $1.02382$ | $3.74711$ | $[0, 1, 0, -87040, 8076788]$ | \(y^2=x^3+x^2-87040x+8076788\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 212415.w3 | 212415t2 | 212415.w | 212415t | $4$ | $4$ | \(  3 \cdot 5 \cdot 7^{2} \cdot 17^{2}  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{8} \cdot 17^{8}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $2380$ | $48$ | $0$ | $4.895469126$ | $1$ |  | $6$ | $7077888$ | $2.538139$ | $151334226289/28676025$ | $1.02382$ | $4.43634$ | $[1, 0, 0, -1572166, -622377925]$ | \(y^2+xy=x^3-1572166x-622377925\) | 2.6.0.a.1, 20.12.0-2.a.1.2, 28.12.0-2.a.1.1, 68.12.0-2.a.1.1, 140.24.0.?, $\ldots$ | $[(1439, 9056)]$ | 
      
              | 215985.bu3 | 215985bp2 | 215985.bu | 215985bp | $4$ | $4$ | \(  3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{6} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $26180$ | $48$ | $0$ | $1$ | $1$ |  | $2$ | $737280$ | $1.347525$ | $151334226289/28676025$ | $1.02382$ | $3.26714$ | $[1, 0, 1, -13434, -492593]$ | \(y^2+xy+y=x^3-13434x-492593\) | 2.6.0.a.1, 140.12.0.?, 220.12.0.?, 308.12.0.?, 340.12.0.?, $\ldots$ | $[ ]$ | 
      
              | 301665.ca3 | 301665ca2 | 301665.ca | 301665ca | $4$ | $4$ | \(  3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17  \) | \(  3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13^{6} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $30940$ | $48$ | $0$ | $2.513149387$ | $1$ |  | $6$ | $983040$ | $1.431051$ | $151334226289/28676025$ | $1.02382$ | $3.26006$ | $[1, 0, 1, -18763, 809681]$ | \(y^2+xy+y=x^3-18763x+809681\) | 2.6.0.a.1, 140.12.0.?, 260.12.0.?, 340.12.0.?, 364.12.0.?, $\ldots$ | $[(37, 389)]$ | 
      
              | 342720.cp3 | 342720cp2 | 342720.cp | 342720cp | $4$ | $4$ | \(  2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{18} \cdot 3^{10} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $14280$ | $48$ | $0$ | $1$ | $1$ |  | $3$ | $2097152$ | $1.737604$ | $151334226289/28676025$ | $1.02382$ | $3.51606$ | $[0, 0, 0, -63948, 5104528]$ | \(y^2=x^3-63948x+5104528\) | 2.6.0.a.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, 340.12.0.?, $\ldots$ | $[ ]$ | 
      
              | 342720.gb3 | 342720gb2 | 342720.gb | 342720gb | $4$ | $4$ | \(  2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17  \) | \(  2^{18} \cdot 3^{10} \cdot 5^{2} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $14280$ | $48$ | $0$ | $1$ | $1$ |  | $3$ | $2097152$ | $1.737604$ | $151334226289/28676025$ | $1.02382$ | $3.51606$ | $[0, 0, 0, -63948, -5104528]$ | \(y^2=x^3-63948x-5104528\) | 2.6.0.a.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, 340.12.0.?, $\ldots$ | $[ ]$ | 
      
              | 428400.lv3 | 428400lv2 | 428400.lv | 428400lv | $4$ | $4$ | \(  2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17  \) | \(  2^{12} \cdot 3^{10} \cdot 5^{8} \cdot 7^{2} \cdot 17^{2}  \) | $0$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $1$ | $1$ |  | $3$ | $6291456$ | $2.195747$ | $151334226289/28676025$ | $1.02382$ | $3.87952$ | $[0, 0, 0, -399675, 79758250]$ | \(y^2=x^3-399675x+79758250\) | 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 340.12.0.?, 420.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 455175.ce3 | 455175ce2 | 455175.ce | 455175ce | $4$ | $4$ | \(  3^{2} \cdot 5^{2} \cdot 7 \cdot 17^{2}  \) | \(  3^{10} \cdot 5^{8} \cdot 7^{2} \cdot 17^{8}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.6.0.1 | 2Cs | $7140$ | $48$ | $0$ | $2.139290885$ | $4$ | $2$ | $12$ | $28311552$ | $2.919209$ | $151334226289/28676025$ | $1.02382$ | $4.52781$ | $[1, -1, 1, -7219130, -6120887128]$ | \(y^2+xy+y=x^3-x^2-7219130x-6120887128\) | 2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 204.12.0.?, $\ldots$ | $[(-1686, 36280)]$ | 
      
              | 485520.hz3 | 485520hz2 | 485520.hz | 485520hz | $4$ | $4$ | \(  2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}  \) | \(  2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17^{8}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.12.0.1 | 2Cs | $2380$ | $48$ | $0$ | $3.931251526$ | $1$ |  | $5$ | $9437184$ | $2.258331$ | $151334226289/28676025$ | $1.02382$ | $3.89979$ | $[0, 1, 0, -513360, -116275500]$ | \(y^2=x^3+x^2-513360x-116275500\) | 2.6.0.a.1, 4.12.0-2.a.1.1, 140.24.0.?, 340.24.0.?, 476.24.0.?, $\ldots$ | $[(-486, 4320)]$ |