Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-29142x+1922116\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-29142xz^2+1922116z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-466275x+122549150\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(104, 38)$ | $0.28003595463955909110194234565$ | $\infty$ |
Integral points
\( \left(99, -47\right) \), \( \left(99, -52\right) \), \( \left(104, 38\right) \), \( \left(104, -142\right) \), \( \left(140, 686\right) \), \( \left(140, -826\right) \), \( \left(309, 4573\right) \), \( \left(309, -4882\right) \)
Invariants
| Conductor: | $N$ | = | \( 453150 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 53$ |
|
| Discriminant: | $\Delta$ | = | $7341030000$ | = | $2^{4} \cdot 3^{6} \cdot 5^{4} \cdot 19 \cdot 53 $ |
|
| j-invariant: | $j$ | = | \( \frac{6007345507825}{16112} \) | = | $2^{-4} \cdot 5^{2} \cdot 19^{-1} \cdot 53^{-1} \cdot 6217^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1276076155140472420855619105$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.041822167035292271521019514297$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8714874144524642$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.259636028218106$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.28003595463955909110194234565$ |
|
| Real period: | $\Omega$ | ≈ | $1.1477924757658759685144520780$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot2\cdot3\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.8570779401504008407570844517 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.857077940 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.147792 \cdot 0.280036 \cdot 12}{1^2} \\ & \approx 3.857077940\end{aligned}$$
Modular invariants
Modular form 453150.2.a.cg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1188864 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $53$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4028 = 2^{2} \cdot 19 \cdot 53 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 2757 & 2 \\ 2757 & 3 \end{array}\right),\left(\begin{array}{rr} 4027 & 2 \\ 4026 & 3 \end{array}\right),\left(\begin{array}{rr} 2281 & 2 \\ 2281 & 3 \end{array}\right),\left(\begin{array}{rr} 2015 & 2 \\ 2015 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4027 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[4028])$ is a degree-$45734734356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4028\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 226575 = 3^{2} \cdot 5^{2} \cdot 19 \cdot 53 \) |
| $3$ | additive | $2$ | \( 50350 = 2 \cdot 5^{2} \cdot 19 \cdot 53 \) |
| $5$ | additive | $14$ | \( 18126 = 2 \cdot 3^{2} \cdot 19 \cdot 53 \) |
| $19$ | split multiplicative | $20$ | \( 23850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 53 \) |
| $53$ | split multiplicative | $54$ | \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 453150cg consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 50350p1, its twist by $-3$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.