| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 50350.a1 |
50350e1 |
50350.a |
50350e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{4} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$4.849321345$ |
$1$ |
|
$0$ |
$247680$ |
$1.383020$ |
$6007345507825/16112$ |
$0.87149$ |
$4.20425$ |
$[1, 0, 1, -80951, -8871702]$ |
\(y^2+xy+y=x^3-80951x-8871702\) |
4028.2.0.? |
$[(-1478/3, 2299/3)]$ |
| 50350.p1 |
50350p1 |
50350.p |
50350p |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{4} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$49536$ |
$0.578301$ |
$6007345507825/16112$ |
$0.87149$ |
$3.31233$ |
$[1, 1, 1, -3238, -72269]$ |
\(y^2+xy+y=x^3+x^2-3238x-72269\) |
4028.2.0.? |
$[ ]$ |
| 402800.a1 |
402800a1 |
402800.a |
402800a |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$2.032041713$ |
$1$ |
|
$2$ |
$1188864$ |
$1.271448$ |
$6007345507825/16112$ |
$0.87149$ |
$3.42313$ |
$[0, 1, 0, -51808, 4521588]$ |
\(y^2=x^3+x^2-51808x+4521588\) |
4028.2.0.? |
$[(132, 18)]$ |
| 402800.bj1 |
402800bj1 |
402800.bj |
402800bj |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$11.64391326$ |
$1$ |
|
$0$ |
$5944320$ |
$2.076168$ |
$6007345507825/16112$ |
$0.87149$ |
$4.17134$ |
$[0, -1, 0, -1295208, 567788912]$ |
\(y^2=x^3-x^2-1295208x+567788912\) |
4028.2.0.? |
$[(2451818/61, 12855534/61)]$ |
| 453150.cg1 |
453150cg1 |
453150.cg |
453150cg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$0.280035954$ |
$1$ |
|
$8$ |
$1188864$ |
$1.127607$ |
$6007345507825/16112$ |
$0.87149$ |
$3.25964$ |
$[1, -1, 0, -29142, 1922116]$ |
\(y^2+xy=x^3-x^2-29142x+1922116\) |
4028.2.0.? |
$[(104, 38)]$ |
| 453150.di1 |
453150di1 |
453150.di |
453150di |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5944320$ |
$1.932327$ |
$6007345507825/16112$ |
$0.87149$ |
$4.00109$ |
$[1, -1, 1, -728555, 239535947]$ |
\(y^2+xy+y=x^3-x^2-728555x+239535947\) |
4028.2.0.? |
$[ ]$ |