Properties

Label 45045.k
Number of curves $4$
Conductor $45045$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 45045.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 45045.k do not have complex multiplication.

Modular form 45045.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} - q^{7} + 3 q^{8} - q^{10} - q^{11} - q^{13} + q^{14} - q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 45045.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45045.k1 45045bf4 \([1, -1, 1, -188015027, -992161976146]\) \(1008263082603610603475953129/90818848068071248125\) \(66206940241623939883125\) \([2]\) \(7077888\) \(3.4187\)  
45045.k2 45045bf3 \([1, -1, 1, -68655857, 207976791206]\) \(49094060756434440524632009/2782940530242919921875\) \(2028763646547088623046875\) \([2]\) \(7077888\) \(3.4187\)  
45045.k3 45045bf2 \([1, -1, 1, -12599402, -13132289896]\) \(303421219916435677303129/73345189777625390625\) \(53468643347888909765625\) \([2, 2]\) \(3538944\) \(3.0721\)  
45045.k4 45045bf1 \([1, -1, 1, 1867603, -1292493004]\) \(988211925316565164151/1561115353427004375\) \(-1138053092648286189375\) \([2]\) \(1769472\) \(2.7255\) \(\Gamma_0(N)\)-optimal