Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-14496776x+19157420724\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-14496776xz^2+19157420724z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1174238883x+13969282424418\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-3885, 129828)$ | $8.7381707748173064760015644350$ | $\infty$ |
Integral points
\((-3885,\pm 129828)\)
Invariants
| Conductor: | $N$ | = | \( 443760 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 43^{2}$ |
|
| Discriminant: | $\Delta$ | = | $36354978143450150400000$ | = | $2^{12} \cdot 3^{5} \cdot 5^{5} \cdot 43^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{7037694889}{759375} \) | = | $3^{-5} \cdot 5^{-5} \cdot 43 \cdot 547^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0629890301025121647697189208$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.13762489425314142696274154289$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9179627623362381$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.697510550294104$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.7381707748173064760015644350$ |
|
| Real period: | $\Omega$ | ≈ | $0.11219503647865793809445889546$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 2\cdot5\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.8037938883737039928934086204 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.803793888 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.112195 \cdot 8.738171 \cdot 10}{1^2} \\ & \approx 9.803793888\end{aligned}$$
Modular invariants
Modular form 443760.2.a.bt
For more coefficients, see the Downloads section to the right.
| Modular degree: | 46233600 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $5$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $43$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 60.2.0.a.1, level \( 60 = 2^{2} \cdot 3 \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 37 & 2 \\ 37 & 3 \end{array}\right),\left(\begin{array}{rr} 59 & 2 \\ 58 & 3 \end{array}\right),\left(\begin{array}{rr} 31 & 2 \\ 31 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 59 & 0 \end{array}\right),\left(\begin{array}{rr} 41 & 2 \\ 41 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[60])$ is a degree-$1105920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/60\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 27735 = 3 \cdot 5 \cdot 43^{2} \) |
| $3$ | split multiplicative | $4$ | \( 147920 = 2^{4} \cdot 5 \cdot 43^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 29584 = 2^{4} \cdot 43^{2} \) |
| $43$ | additive | $674$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 443760bt consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 27735m1, its twist by $172$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.