| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 27735.e1 |
27735m1 |
27735.e |
27735m |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 43^{2} \) |
\( 3^{5} \cdot 5^{5} \cdot 43^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$0.164633928$ |
$1$ |
|
$22$ |
$16800$ |
$0.489242$ |
$7037694889/759375$ |
$0.91796$ |
$2.95167$ |
$[1, 0, 0, -490, 3725]$ |
\(y^2+xy=x^3-490x+3725\) |
60.2.0.a.1 |
$[(5, 35), (35, 155)]$ |
$1$ |
| 27735.h1 |
27735a1 |
27735.h |
27735a |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 43^{2} \) |
\( 3^{5} \cdot 5^{5} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$10.29875012$ |
$1$ |
|
$0$ |
$722400$ |
$2.369843$ |
$7037694889/759375$ |
$0.91796$ |
$5.15756$ |
$[1, 1, 0, -906048, -299787723]$ |
\(y^2+xy=x^3+x^2-906048x-299787723\) |
60.2.0.a.1 |
$[(4429708/9, 9301901509/9)]$ |
$1$ |
| 83205.k1 |
83205o1 |
83205.k |
83205o |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 43^{2} \) |
\( 3^{11} \cdot 5^{5} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$0.748720272$ |
$1$ |
|
$4$ |
$5779200$ |
$2.919147$ |
$7037694889/759375$ |
$0.91796$ |
$5.23925$ |
$[1, -1, 1, -8154437, 8086114086]$ |
\(y^2+xy+y=x^3-x^2-8154437x+8086114086\) |
60.2.0.a.1 |
$[(3236, 123189)]$ |
$1$ |
| 83205.n1 |
83205n1 |
83205.n |
83205n |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 43^{2} \) |
\( 3^{11} \cdot 5^{5} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$5.005903228$ |
$1$ |
|
$2$ |
$134400$ |
$1.038548$ |
$7037694889/759375$ |
$0.91796$ |
$3.24728$ |
$[1, -1, 0, -4410, -100575]$ |
\(y^2+xy=x^3-x^2-4410x-100575\) |
60.2.0.a.1 |
$[(112, 839)]$ |
$1$ |
| 138675.i1 |
138675e1 |
138675.i |
138675e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 43^{2} \) |
\( 3^{5} \cdot 5^{11} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17337600$ |
$3.174561$ |
$7037694889/759375$ |
$0.91796$ |
$5.27207$ |
$[1, 0, 0, -22651213, -37428162958]$ |
\(y^2+xy=x^3-22651213x-37428162958\) |
60.2.0.a.1 |
$[ ]$ |
$1$ |
| 138675.q1 |
138675u1 |
138675.q |
138675u |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 43^{2} \) |
\( 3^{5} \cdot 5^{11} \cdot 43^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$10.04152687$ |
$1$ |
|
$4$ |
$403200$ |
$1.293961$ |
$7037694889/759375$ |
$0.91796$ |
$3.36604$ |
$[1, 1, 0, -12250, 465625]$ |
\(y^2+xy=x^3+x^2-12250x+465625\) |
60.2.0.a.1 |
$[(80, 35), (-120, 535)]$ |
$1$ |
| 416025.r1 |
416025r1 |
416025.r |
416025r |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 43^{2} \) |
\( 3^{11} \cdot 5^{11} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1.363975741$ |
$1$ |
|
$4$ |
$3225600$ |
$1.843267$ |
$7037694889/759375$ |
$0.91796$ |
$3.58969$ |
$[1, -1, 1, -110255, -12682128]$ |
\(y^2+xy+y=x^3-x^2-110255x-12682128\) |
60.2.0.a.1 |
$[(-166, 1095)]$ |
$1$ |
| 416025.bn1 |
416025bn1 |
416025.bn |
416025bn |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 43^{2} \) |
\( 3^{11} \cdot 5^{11} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$138700800$ |
$3.723866$ |
$7037694889/759375$ |
$0.91796$ |
$5.33388$ |
$[1, -1, 0, -203860917, 1010560399866]$ |
\(y^2+xy=x^3-x^2-203860917x+1010560399866\) |
60.2.0.a.1 |
$[ ]$ |
$1$ |
| 443760.bn1 |
443760bn1 |
443760.bn |
443760bn |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{5} \cdot 5^{5} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1075200$ |
$1.182388$ |
$7037694889/759375$ |
$0.91796$ |
$2.96198$ |
$[0, -1, 0, -7840, -238400]$ |
\(y^2=x^3-x^2-7840x-238400\) |
60.2.0.a.1 |
$[ ]$ |
$1$ |
| 443760.bt1 |
443760bt1 |
443760.bt |
443760bt |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{5} \cdot 5^{5} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$8.738170774$ |
$1$ |
|
$2$ |
$46233600$ |
$3.062988$ |
$7037694889/759375$ |
$0.91796$ |
$4.69751$ |
$[0, 1, 0, -14496776, 19157420724]$ |
\(y^2=x^3+x^2-14496776x+19157420724\) |
60.2.0.a.1 |
$[(-3885, 129828)]$ |
$1$ |