Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-431421397x+5369381586269\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-431421397xz^2+5369381586269z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-34945133184x+3914174340990576\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(252613/4, 121324931/8)$ | $0.77637743141740108923319790091$ | $\infty$ |
| $(-7076, 2840383)$ | $2.0686958934939223901449190237$ | $\infty$ |
Integral points
\((-25276,\pm 353717)\), \((-9820,\pm 2942597)\), \((-7076,\pm 2840383)\), \((23668,\pm 2901059)\)
Invariants
| Conductor: | $N$ | = | \( 435344 \) | = | $2^{4} \cdot 7 \cdot 13^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-7314928862066456615512027136$ | = | $-1 \cdot 2^{12} \cdot 7^{12} \cdot 13^{9} \cdot 23^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{449167881463536812032}{369990050199923699} \) | = | $-1 \cdot 2^{21} \cdot 7^{-12} \cdot 13^{-3} \cdot 19^{3} \cdot 23^{-3} \cdot 47^{3} \cdot 67^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.0446361587135560808042583294$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0690142994228424033602824872$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.039990952304704$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.55662052523304$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5020440351039714414642532521$ |
|
| Real period: | $\Omega$ | ≈ | $0.038343991646730109331084367854$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ 1\cdot( 2^{2} \cdot 3 )\cdot2^{2}\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.2935884066468354004465979259 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.293588407 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.038344 \cdot 1.502044 \cdot 144}{1^2} \\ & \approx 8.293588407\end{aligned}$$
Modular invariants
Modular form 435344.2.a.o
For more coefficients, see the Downloads section to the right.
| Modular degree: | 282175488 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
| $7$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $13$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
| $23$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Cs | 3.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 75348 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \cdot 23 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 37673 & 0 \\ 0 & 75347 \end{array}\right),\left(\begin{array}{rr} 75337 & 75330 \\ 37836 & 54683 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 64571 & 75330 \\ 54270 & 38297 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 37691 & 75330 \\ 37692 & 75329 \end{array}\right),\left(\begin{array}{rr} 75331 & 18 \\ 75330 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 40571 & 75330 \\ 63747 & 75185 \end{array}\right),\left(\begin{array}{rr} 16381 & 18 \\ 34407 & 163 \end{array}\right)$.
The torsion field $K:=\Q(E[75348])$ is a degree-$36588435897581568$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/75348\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 3887 = 13^{2} \cdot 23 \) |
| $3$ | good | $2$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 62192 = 2^{4} \cdot 13^{2} \cdot 23 \) |
| $13$ | additive | $98$ | \( 2576 = 2^{4} \cdot 7 \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 18928 = 2^{4} \cdot 7 \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 435344o
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 2093f2, its twist by $-52$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.