| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2093.h2 |
2093f2 |
2093.h |
2093f |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 23 \) |
\( - 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$37674$ |
$144$ |
$3$ |
$7.385459835$ |
$1$ |
|
$4$ |
$23328$ |
$2.069016$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.33493$ |
$[0, 1, 1, -159549, -38239046]$ |
\(y^2+y=x^3+x^2-159549x-38239046\) |
3.24.0-3.a.1.1, 63.72.0-63.b.1.3, 598.2.0.?, 1794.48.1.?, 37674.144.3.? |
$[(9346, 902723)]$ |
| 14651.h2 |
14651e2 |
14651.h |
14651e |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \cdot 23 \) |
\( - 7^{18} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1119744$ |
$3.041969$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.26698$ |
$[0, -1, 1, -7817917, 13100356870]$ |
\(y^2+y=x^3-x^2-7817917x+13100356870\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 63.72.0-63.b.1.2, 598.2.0.?, 1794.24.1.?, $\ldots$ |
$[ ]$ |
| 18837.e2 |
18837r2 |
18837.e |
18837r |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 3^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$37674$ |
$144$ |
$3$ |
$1.793233846$ |
$1$ |
|
$6$ |
$699840$ |
$2.618320$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.59053$ |
$[0, 0, 1, -1435944, 1031018292]$ |
\(y^2+y=x^3-1435944x+1031018292\) |
3.24.0-3.a.1.1, 63.72.0-63.b.1.1, 598.2.0.?, 1794.48.1.?, 37674.144.3.? |
$[(1158, 30348)]$ |
| 27209.i2 |
27209b2 |
27209.i |
27209b |
$3$ |
$9$ |
\( 7 \cdot 13^{2} \cdot 23 \) |
\( - 7^{12} \cdot 13^{9} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$12.93255292$ |
$1$ |
|
$0$ |
$3919104$ |
$3.351490$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.25080$ |
$[0, 1, 1, -26963837, -83903328245]$ |
\(y^2+y=x^3+x^2-26963837x-83903328245\) |
3.12.0.a.1, 39.24.0-3.a.1.1, 63.36.0.b.1, 138.24.0.?, 598.2.0.?, $\ldots$ |
$[(33239077/33, 188556860015/33)]$ |
| 33488.m2 |
33488t2 |
33488.m |
33488t |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 2^{12} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$75348$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1679616$ |
$2.762161$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.44747$ |
$[0, -1, 0, -2552789, 2444746141]$ |
\(y^2=x^3-x^2-2552789x+2444746141\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 63.36.0.b.1, 252.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 48139.i2 |
48139f2 |
48139.i |
48139f |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 23^{2} \) |
\( - 7^{12} \cdot 13^{3} \cdot 23^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$3.155819163$ |
$1$ |
|
$0$ |
$12317184$ |
$3.636761$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.23753$ |
$[0, 1, 1, -84401597, 464579257312]$ |
\(y^2+y=x^3+x^2-84401597x+464579257312\) |
3.12.0.a.1, 63.36.0.b.1, 69.24.0-3.a.1.1, 78.24.0.?, 598.2.0.?, $\ldots$ |
$[(1482049/12, 1431434519/12)]$ |
| 52325.g2 |
52325d2 |
52325.g |
52325d |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 5^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$188370$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2519424$ |
$2.873734$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.34694$ |
$[0, -1, 1, -3988733, -4771903257]$ |
\(y^2+y=x^3-x^2-3988733x-4771903257\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 63.36.0.b.1, 315.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 131859.w2 |
131859w2 |
131859.w |
131859w |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 13 \cdot 23 \) |
\( - 3^{6} \cdot 7^{18} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$33592320$ |
$3.591274$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.65811$ |
$[0, 0, 1, -70361256, -353639274242]$ |
\(y^2+y=x^3-70361256x-353639274242\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 63.72.0-63.b.1.4, 598.2.0.?, 1794.24.1.?, $\ldots$ |
$[ ]$ |
| 133952.t2 |
133952bz2 |
133952.t |
133952bz |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 2^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$150696$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$3359232$ |
$2.415588$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$4.45548$ |
$[0, -1, 0, -638197, -305274169]$ |
\(y^2=x^3-x^2-638197x-305274169\) |
3.12.0.a.1, 24.24.0-3.a.1.1, 63.36.0.b.1, 504.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 133952.br2 |
133952x2 |
133952.br |
133952x |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 2^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$150696$ |
$144$ |
$3$ |
$2.473326148$ |
$1$ |
|
$0$ |
$3359232$ |
$2.415588$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$4.45548$ |
$[0, 1, 0, -638197, 305274169]$ |
\(y^2=x^3+x^2-638197x+305274169\) |
3.12.0.a.1, 24.24.0-3.a.1.2, 63.36.0.b.1, 504.72.0.?, 598.2.0.?, $\ldots$ |
$[(-15216/5, 2705927/5)]$ |
| 190463.w2 |
190463w2 |
190463.w |
190463w |
$3$ |
$9$ |
\( 7^{2} \cdot 13^{2} \cdot 23 \) |
\( - 7^{18} \cdot 13^{9} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$188116992$ |
$4.324448$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.21065$ |
$[0, -1, 1, -1321228029, 28776199131903]$ |
\(y^2+y=x^3-x^2-1321228029x+28776199131903\) |
3.12.0.a.1, 63.36.0.b.1, 273.24.0.?, 598.2.0.?, 819.72.0.?, $\ldots$ |
$[ ]$ |
| 234416.bj2 |
234416bj2 |
234416.bj |
234416bj |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \cdot 23 \) |
\( - 2^{12} \cdot 7^{18} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$75348$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$80621568$ |
$3.735115$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.53442$ |
$[0, 1, 0, -125086677, -838297753021]$ |
\(y^2=x^3+x^2-125086677x-838297753021\) |
3.12.0.a.1, 63.36.0.b.1, 84.24.0.?, 252.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 244881.bk2 |
244881bk2 |
244881.bk |
244881bk |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13^{2} \cdot 23 \) |
\( - 3^{6} \cdot 7^{12} \cdot 13^{9} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$8.062627270$ |
$1$ |
|
$0$ |
$117573120$ |
$3.900795$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.67517$ |
$[0, 0, 1, -242674536, 2265147188073]$ |
\(y^2+y=x^3-242674536x+2265147188073\) |
3.12.0.a.1, 39.24.0-3.a.1.1, 63.36.0.b.1, 138.24.0.?, 598.2.0.?, $\ldots$ |
$[(-1396577/9, 838738439/9)]$ |
| 253253.k2 |
253253k2 |
253253.k |
253253k |
$3$ |
$9$ |
\( 7 \cdot 11^{2} \cdot 13 \cdot 23 \) |
\( - 7^{12} \cdot 11^{6} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$414414$ |
$144$ |
$3$ |
$1$ |
$25$ |
$5$ |
$0$ |
$31492800$ |
$3.267963$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.04949$ |
$[0, 1, 1, -19305469, 50818948065]$ |
\(y^2+y=x^3+x^2-19305469x+50818948065\) |
3.12.0.a.1, 33.24.0-3.a.1.1, 63.36.0.b.1, 598.2.0.?, 693.72.0.?, $\ldots$ |
$[ ]$ |
| 301392.j2 |
301392j2 |
301392.j |
301392j |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 2^{12} \cdot 3^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$75348$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$50388480$ |
$3.311466$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.02122$ |
$[0, 0, 0, -22975104, -65985170704]$ |
\(y^2=x^3-22975104x-65985170704\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 63.36.0.b.1, 252.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 336973.p2 |
336973p2 |
336973.p |
336973p |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \cdot 23^{2} \) |
\( - 7^{18} \cdot 13^{3} \cdot 23^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$34.19179979$ |
$1$ |
|
$0$ |
$591224832$ |
$4.609718$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$6.20121$ |
$[0, -1, 1, -4135678269, -159358956614628]$ |
\(y^2+y=x^3-x^2-4135678269x-159358956614628\) |
3.12.0.a.1, 63.36.0.b.1, 483.24.0.?, 546.24.0.?, 598.2.0.?, $\ldots$ |
$[(38892183763752169381/1868190, 242541588160912667553452212921/1868190)]$ |
| 366275.r2 |
366275r2 |
366275.r |
366275r |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 13 \cdot 23 \) |
\( - 5^{6} \cdot 7^{18} \cdot 13^{3} \cdot 23^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$188370$ |
$144$ |
$3$ |
$8.492636501$ |
$1$ |
|
$2$ |
$120932352$ |
$3.846687$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.44613$ |
$[0, 1, 1, -195447933, 1637153712919]$ |
\(y^2+y=x^3+x^2-195447933x+1637153712919\) |
3.12.0.a.1, 63.36.0.b.1, 105.24.0.?, 315.72.0.?, 598.2.0.?, $\ldots$ |
$[(-13457/3, 37471193/3), (1839349/19, 6032860817/19)]$ |
| 433251.bb2 |
433251bb2 |
433251.bb |
433251bb |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13 \cdot 23^{2} \) |
\( - 3^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$37674$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$369515520$ |
$4.186066$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.68945$ |
$[0, 0, 1, -759614376, -12544399561806]$ |
\(y^2+y=x^3-759614376x-12544399561806\) |
3.12.0.a.1, 63.36.0.b.1, 69.24.0-3.a.1.1, 78.24.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |
| 435344.o2 |
435344o2 |
435344.o |
435344o |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13^{2} \cdot 23 \) |
\( - 2^{12} \cdot 7^{12} \cdot 13^{9} \cdot 23^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$75348$ |
$144$ |
$3$ |
$1.502044035$ |
$1$ |
|
$8$ |
$282175488$ |
$4.044640$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$5.55662$ |
$[0, -1, 0, -431421397, 5369381586269]$ |
\(y^2=x^3-x^2-431421397x+5369381586269\) |
3.12.0.a.1, 63.36.0.b.1, 156.24.0.?, 276.24.0.?, 598.2.0.?, $\ldots$ |
$[(252613/2, 121324931/2), (-7076, 2840383)]$ |
| 470925.br2 |
470925br2 |
470925.br |
470925br |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 23 \) |
\( - 3^{6} \cdot 5^{6} \cdot 7^{12} \cdot 13^{3} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$188370$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$75582720$ |
$3.423038$ |
$-449167881463536812032/369990050199923699$ |
$1.03999$ |
$4.95216$ |
$[0, 0, 1, -35898600, 128877286531]$ |
\(y^2+y=x^3-35898600x+128877286531\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 63.36.0.b.1, 315.72.0.?, 598.2.0.?, $\ldots$ |
$[ ]$ |