Properties

Label 4335c
Number of curves $2$
Conductor $4335$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4335c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4335c do not have complex multiplication.

Modular form 4335.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} + q^{5} - 2 q^{7} + q^{9} + 3 q^{11} + 2 q^{12} - 4 q^{13} - q^{15} + 4 q^{16} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 4335c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4335.e2 4335c1 \([0, -1, 1, -1280655, 34490306]\) \(115220905984/66430125\) \(133922726806064626125\) \([]\) \(117504\) \(2.5515\) \(\Gamma_0(N)\)-optimal
4335.e1 4335c2 \([0, -1, 1, -68932665, -220260749857]\) \(17968412610002944/158203125\) \(318936535031970703125\) \([]\) \(352512\) \(3.1008\)