Show commands: SageMath
Rank
The elliptic curves in class 4335c have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 4335c do not have complex multiplication.Modular form 4335.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 4335c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 4335.e2 | 4335c1 | \([0, -1, 1, -1280655, 34490306]\) | \(115220905984/66430125\) | \(133922726806064626125\) | \([]\) | \(117504\) | \(2.5515\) | \(\Gamma_0(N)\)-optimal |
| 4335.e1 | 4335c2 | \([0, -1, 1, -68932665, -220260749857]\) | \(17968412610002944/158203125\) | \(318936535031970703125\) | \([]\) | \(352512\) | \(3.1008\) |