Properties

Label 4335.2.a.c
Level $4335$
Weight $2$
Character orbit 4335.a
Self dual yes
Analytic conductor $34.615$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4335 = 3 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4335.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(34.6151492762\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{4} - q^{5} - q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} - q^{4} - q^{5} - q^{6} + 3q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} - 2q^{13} - q^{15} - q^{16} - q^{18} + 4q^{19} + q^{20} - 4q^{22} + 3q^{24} + q^{25} + 2q^{26} + q^{27} + 2q^{29} + q^{30} - 5q^{32} + 4q^{33} - q^{36} + 10q^{37} - 4q^{38} - 2q^{39} - 3q^{40} - 10q^{41} + 4q^{43} - 4q^{44} - q^{45} + 8q^{47} - q^{48} - 7q^{49} - q^{50} + 2q^{52} - 10q^{53} - q^{54} - 4q^{55} + 4q^{57} - 2q^{58} - 4q^{59} + q^{60} + 2q^{61} + 7q^{64} + 2q^{65} - 4q^{66} + 12q^{67} + 8q^{71} + 3q^{72} - 10q^{73} - 10q^{74} + q^{75} - 4q^{76} + 2q^{78} + q^{80} + q^{81} + 10q^{82} + 12q^{83} - 4q^{86} + 2q^{87} + 12q^{88} - 6q^{89} + q^{90} - 8q^{94} - 4q^{95} - 5q^{96} - 2q^{97} + 7q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 −1.00000 −1.00000 −1.00000 0 3.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4335.2.a.c 1
17.b even 2 1 15.2.a.a 1
51.c odd 2 1 45.2.a.a 1
68.d odd 2 1 240.2.a.d 1
85.c even 2 1 75.2.a.b 1
85.g odd 4 2 75.2.b.b 2
119.d odd 2 1 735.2.a.c 1
119.h odd 6 2 735.2.i.d 2
119.j even 6 2 735.2.i.e 2
136.e odd 2 1 960.2.a.a 1
136.h even 2 1 960.2.a.l 1
153.h even 6 2 405.2.e.f 2
153.i odd 6 2 405.2.e.c 2
187.b odd 2 1 1815.2.a.d 1
204.h even 2 1 720.2.a.c 1
221.b even 2 1 2535.2.a.j 1
255.h odd 2 1 225.2.a.b 1
255.o even 4 2 225.2.b.b 2
272.k odd 4 2 3840.2.k.r 2
272.r even 4 2 3840.2.k.m 2
323.c odd 2 1 5415.2.a.j 1
340.d odd 2 1 1200.2.a.e 1
340.r even 4 2 1200.2.f.h 2
357.c even 2 1 2205.2.a.i 1
391.c odd 2 1 7935.2.a.d 1
408.b odd 2 1 2880.2.a.y 1
408.h even 2 1 2880.2.a.bc 1
561.h even 2 1 5445.2.a.c 1
595.b odd 2 1 3675.2.a.j 1
663.g odd 2 1 7605.2.a.g 1
680.h even 2 1 4800.2.a.t 1
680.k odd 2 1 4800.2.a.bz 1
680.u even 4 2 4800.2.f.c 2
680.bi odd 4 2 4800.2.f.bf 2
935.h odd 2 1 9075.2.a.g 1
1020.b even 2 1 3600.2.a.u 1
1020.x odd 4 2 3600.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 17.b even 2 1
45.2.a.a 1 51.c odd 2 1
75.2.a.b 1 85.c even 2 1
75.2.b.b 2 85.g odd 4 2
225.2.a.b 1 255.h odd 2 1
225.2.b.b 2 255.o even 4 2
240.2.a.d 1 68.d odd 2 1
405.2.e.c 2 153.i odd 6 2
405.2.e.f 2 153.h even 6 2
720.2.a.c 1 204.h even 2 1
735.2.a.c 1 119.d odd 2 1
735.2.i.d 2 119.h odd 6 2
735.2.i.e 2 119.j even 6 2
960.2.a.a 1 136.e odd 2 1
960.2.a.l 1 136.h even 2 1
1200.2.a.e 1 340.d odd 2 1
1200.2.f.h 2 340.r even 4 2
1815.2.a.d 1 187.b odd 2 1
2205.2.a.i 1 357.c even 2 1
2535.2.a.j 1 221.b even 2 1
2880.2.a.y 1 408.b odd 2 1
2880.2.a.bc 1 408.h even 2 1
3600.2.a.u 1 1020.b even 2 1
3600.2.f.e 2 1020.x odd 4 2
3675.2.a.j 1 595.b odd 2 1
3840.2.k.m 2 272.r even 4 2
3840.2.k.r 2 272.k odd 4 2
4335.2.a.c 1 1.a even 1 1 trivial
4800.2.a.t 1 680.h even 2 1
4800.2.a.bz 1 680.k odd 2 1
4800.2.f.c 2 680.u even 4 2
4800.2.f.bf 2 680.bi odd 4 2
5415.2.a.j 1 323.c odd 2 1
5445.2.a.c 1 561.h even 2 1
7605.2.a.g 1 663.g odd 2 1
7935.2.a.d 1 391.c odd 2 1
9075.2.a.g 1 935.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4335))\):

\( T_{2} + 1 \)
\( T_{7} \)
\( T_{11} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( -4 + T \)
$13$ \( 2 + T \)
$17$ \( T \)
$19$ \( -4 + T \)
$23$ \( T \)
$29$ \( -2 + T \)
$31$ \( T \)
$37$ \( -10 + T \)
$41$ \( 10 + T \)
$43$ \( -4 + T \)
$47$ \( -8 + T \)
$53$ \( 10 + T \)
$59$ \( 4 + T \)
$61$ \( -2 + T \)
$67$ \( -12 + T \)
$71$ \( -8 + T \)
$73$ \( 10 + T \)
$79$ \( T \)
$83$ \( -12 + T \)
$89$ \( 6 + T \)
$97$ \( 2 + T \)
show more
show less