Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-219470363x-1251463774383\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-219470363xz^2-1251463774383z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-284433590475x-58387440556841850\) | (homogenize, minimize) | 
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 43350 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 17^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $2305348319101680000$ | = | $2^{7} \cdot 3^{5} \cdot 5^{4} \cdot 17^{9} $ |  | 
| j-invariant: | $j$ | = | \( \frac{15773608170290225}{31104} \) | = | $2^{-7} \cdot 3^{-5} \cdot 5^{2} \cdot 199^{3} \cdot 431^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2035144824924662520325729742$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.54212517030560406697850223305$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0709629684042374$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.484348075431268$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.039224334533294553370168330366$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 210 $ = $ 7\cdot5\cdot3\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $8.2371102519918562077353493768 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 8.237110252 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.039224 \cdot 1.000000 \cdot 210}{1^2} \\ & \approx 8.237110252\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9139200 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 | 
| $3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 | 
| $5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 | 
| $17$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $5$ | 5B | 5.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1021 & 10 \\ 1025 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1985 & 1921 \end{array}\right),\left(\begin{array}{rr} 2031 & 10 \\ 2030 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1361 & 10 \\ 685 & 51 \end{array}\right),\left(\begin{array}{rr} 1533 & 1030 \\ 20 & 1189 \end{array}\right),\left(\begin{array}{rr} 353 & 2030 \\ 655 & 1947 \end{array}\right),\left(\begin{array}{rr} 511 & 10 \\ 515 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$57755566080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1275 = 3 \cdot 5^{2} \cdot 17 \) | 
| $3$ | split multiplicative | $4$ | \( 14450 = 2 \cdot 5^{2} \cdot 17^{2} \) | 
| $5$ | additive | $14$ | \( 578 = 2 \cdot 17^{2} \) | 
| $7$ | good | $2$ | \( 21675 = 3 \cdot 5^{2} \cdot 17^{2} \) | 
| $17$ | additive | $98$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 43350.do
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 43350.bx2, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.3.10200.1 | \(\Z/2\Z\) | not in database | 
| $4$ | 4.0.614125.1 | \(\Z/5\Z\) | not in database | 
| $6$ | 6.6.42448320000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/10\Z\) | not in database | 
| $20$ | 20.4.447253601798408717656250000000000000000.3 | \(\Z/5\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 5 | 3 | - | 2 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
