| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 43350.i1 |
43350k2 |
43350.i |
43350k |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{10} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$75.42572393$ |
$1$ |
|
$0$ |
$45696000$ |
$4.008232$ |
$15773608170290225/31104$ |
$1.07096$ |
$7.38878$ |
$[1, 1, 0, -5486759075, -156432971797875]$ |
\(y^2+xy=x^3+x^2-5486759075x-156432971797875\) |
5.6.0.a.1, 85.24.0.?, 120.12.0.?, 408.2.0.?, 2040.48.1.? |
$[(-2816713229312396555136958168858358801/8115689464722793, 11224101550011566640692325568285882668896552937138857/8115689464722793)]$ |
| 43350.bq1 |
43350bh2 |
43350.bq |
43350bh |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2688000$ |
$2.591625$ |
$15773608170290225/31104$ |
$1.07096$ |
$5.79664$ |
$[1, 0, 1, -18985326, -31841737952]$ |
\(y^2+xy+y=x^3-18985326x-31841737952\) |
5.6.0.a.1, 85.24.0.?, 120.12.0.?, 408.2.0.?, 2040.48.1.? |
$[ ]$ |
| 43350.bx2 |
43350cq1 |
43350.bx |
43350cq |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{4} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$2.779809337$ |
$1$ |
|
$0$ |
$537600$ |
$1.786907$ |
$15773608170290225/31104$ |
$1.07096$ |
$4.89222$ |
$[1, 1, 1, -759413, -255037669]$ |
\(y^2+xy+y=x^3+x^2-759413x-255037669\) |
5.6.0.a.1, 85.24.0.?, 120.12.0.?, 408.2.0.?, 2040.48.1.? |
$[(-12589/5, 31444/5)]$ |
| 43350.do2 |
43350do1 |
43350.do |
43350do |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{4} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$9139200$ |
$3.203514$ |
$15773608170290225/31104$ |
$1.07096$ |
$6.48435$ |
$[1, 0, 0, -219470363, -1251463774383]$ |
\(y^2+xy=x^3-219470363x-1251463774383\) |
5.6.0.a.1, 85.24.0.?, 120.12.0.?, 408.2.0.?, 2040.48.1.? |
$[ ]$ |
| 130050.r2 |
130050ds1 |
130050.r |
130050ds |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{4} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$0.959958631$ |
$1$ |
|
$4$ |
$4300800$ |
$2.336212$ |
$15773608170290225/31104$ |
$1.07096$ |
$4.99557$ |
$[1, -1, 0, -6834717, 6879182341]$ |
\(y^2+xy=x^3-x^2-6834717x+6879182341\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ |
$[(1509, -712)]$ |
| 130050.dd2 |
130050ed1 |
130050.dd |
130050ed |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{4} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$7.785473782$ |
$1$ |
|
$0$ |
$73113600$ |
$3.752819$ |
$15773608170290225/31104$ |
$1.07096$ |
$6.43916$ |
$[1, -1, 0, -1975233267, 33789521908341]$ |
\(y^2+xy=x^3-x^2-1975233267x+33789521908341\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ |
$[(1256595/7, -2975358/7)]$ |
| 130050.eh1 |
130050bd2 |
130050.eh |
130050bd |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{10} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$5.006064610$ |
$1$ |
|
$2$ |
$365568000$ |
$4.557541$ |
$15773608170290225/31104$ |
$1.07096$ |
$7.25921$ |
$[1, -1, 1, -49380831680, 4223640857710947]$ |
\(y^2+xy+y=x^3-x^2-49380831680x+4223640857710947\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ |
$[(122175, 3707183)]$ |
| 130050.gz1 |
130050cj2 |
130050.gz |
130050cj |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{10} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$1.313352645$ |
$1$ |
|
$4$ |
$21504000$ |
$3.140934$ |
$15773608170290225/31104$ |
$1.07096$ |
$5.81562$ |
$[1, -1, 1, -170867930, 859726924697]$ |
\(y^2+xy+y=x^3-x^2-170867930x+859726924697\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ |
$[(7545, -3449)]$ |
| 346800.q2 |
346800q1 |
346800.q |
346800q |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{4} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$5.572746250$ |
$1$ |
|
$0$ |
$219340800$ |
$3.896660$ |
$15773608170290225/31104$ |
$1.07096$ |
$6.07937$ |
$[0, -1, 0, -3511525808, 80093681560512]$ |
\(y^2=x^3-x^2-3511525808x+80093681560512\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 340.24.0.?, 408.2.0.?, $\ldots$ |
$[(5780538/13, 6042990/13)]$ |
| 346800.bf1 |
346800bf2 |
346800.bf |
346800bf |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$64512000$ |
$3.284775$ |
$15773608170290225/31104$ |
$1.07096$ |
$5.50377$ |
$[0, -1, 0, -303765208, 2037871228912]$ |
\(y^2=x^3-x^2-303765208x+2037871228912\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 340.24.0.?, 408.2.0.?, $\ldots$ |
$[ ]$ |
| 346800.km1 |
346800km2 |
346800.km |
346800km |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{10} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$6.076977449$ |
$1$ |
|
$2$ |
$1096704000$ |
$4.701378$ |
$15773608170290225/31104$ |
$1.07096$ |
$6.83637$ |
$[0, 1, 0, -87788145208, 10011534618773588]$ |
\(y^2=x^3+x^2-87788145208x+10011534618773588\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 340.24.0.?, 408.2.0.?, $\ldots$ |
$[(1093094, 1104599616)]$ |
| 346800.le2 |
346800le1 |
346800.le |
346800le |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{4} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$12902400$ |
$2.480057$ |
$15773608170290225/31104$ |
$1.07096$ |
$4.74678$ |
$[0, 1, 0, -12150608, 16298109588]$ |
\(y^2=x^3+x^2-12150608x+16298109588\) |
5.6.0.a.1, 85.12.0.?, 120.12.0.?, 340.24.0.?, 408.2.0.?, $\ldots$ |
$[ ]$ |