Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-74080208x+255714558912\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-74080208xz^2+255714558912z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-6000496875x+186397911956250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4989399178/1018081, 104480916212774/1027243729)$ | $18.708455372187957673191245448$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 433200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2224238925588480000000000$ | = | $-1 \cdot 2^{20} \cdot 3^{5} \cdot 5^{10} \cdot 19^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{23891790625}{1181952} \) | = | $-1 \cdot 2^{-8} \cdot 3^{-5} \cdot 5^{5} \cdot 19^{-1} \cdot 197^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4331285882452144524395632550$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.073436342259701399149482026759$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0152667582826738$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.089593788854664$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $18.708455372187957673191245448$ |
|
| Real period: | $\Omega$ | ≈ | $0.081256650177688035863010880828$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.0807456541710611999207512548 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.080745654 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.081257 \cdot 18.708455 \cdot 4}{1^2} \\ & \approx 6.080745654\end{aligned}$$
Modular invariants
Modular form 433200.2.a.o
For more coefficients, see the Downloads section to the right.
| Modular degree: | 82944000 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{12}^{*}$ | additive | -1 | 4 | 20 | 8 |
| $3$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $5$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
| $19$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 228 = 2^{2} \cdot 3 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 227 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 115 & 2 \\ 115 & 3 \end{array}\right),\left(\begin{array}{rr} 77 & 2 \\ 77 & 3 \end{array}\right),\left(\begin{array}{rr} 227 & 2 \\ 226 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 2 \\ 97 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[228])$ is a degree-$283668480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/228\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 27075 = 3 \cdot 5^{2} \cdot 19^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 144400 = 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
| $5$ | additive | $2$ | \( 5776 = 2^{4} \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 433200o consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 2850bb1, its twist by $380$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.