| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2850.f1 |
2850f1 |
2850.f |
2850f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9600$ |
$1.267761$ |
$-23891790625/1181952$ |
$1.01527$ |
$5.03744$ |
$[1, 1, 0, -12825, 577125]$ |
\(y^2+xy=x^3+x^2-12825x+577125\) |
228.2.0.? |
$[ ]$ |
| 2850.w1 |
2850bb1 |
2850.w |
2850bb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.026588528$ |
$1$ |
|
$18$ |
$1920$ |
$0.463043$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.82354$ |
$[1, 0, 0, -513, 4617]$ |
\(y^2+xy=x^3-513x+4617\) |
228.2.0.? |
$[(12, 9)]$ |
| 8550.c1 |
8550r1 |
8550.c |
8550r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{4} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15360$ |
$1.012348$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.08764$ |
$[1, -1, 0, -4617, -124659]$ |
\(y^2+xy=x^3-x^2-4617x-124659\) |
228.2.0.? |
$[ ]$ |
| 8550.bk1 |
8550bg1 |
8550.bk |
8550bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$76800$ |
$1.817068$ |
$-23891790625/1181952$ |
$1.01527$ |
$5.15424$ |
$[1, -1, 1, -115430, -15697803]$ |
\(y^2+xy+y=x^3-x^2-115430x-15697803\) |
228.2.0.? |
$[ ]$ |
| 22800.bs1 |
22800cm1 |
22800.bs |
22800cm |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$3.395509422$ |
$1$ |
|
$2$ |
$46080$ |
$1.156191$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.86011$ |
$[0, -1, 0, -8208, -295488]$ |
\(y^2=x^3-x^2-8208x-295488\) |
228.2.0.? |
$[(122, 710)]$ |
| 22800.cc1 |
22800dc1 |
22800.cc |
22800dc |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{10} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$5.107916444$ |
$1$ |
|
$2$ |
$230400$ |
$1.960909$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.82245$ |
$[0, 1, 0, -205208, -37346412]$ |
\(y^2=x^3+x^2-205208x-37346412\) |
228.2.0.? |
$[(532, 2082)]$ |
| 54150.a1 |
54150n1 |
54150.a |
54150n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{4} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.738568458$ |
$1$ |
|
$6$ |
$691200$ |
$1.935263$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.41150$ |
$[1, 1, 0, -185200, -32038400]$ |
\(y^2+xy=x^3+x^2-185200x-32038400\) |
228.2.0.? |
$[(720, 14080)]$ |
| 54150.cu1 |
54150cs1 |
54150.cu |
54150cs |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{10} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456000$ |
$2.739983$ |
$-23891790625/1181952$ |
$1.01527$ |
$5.29747$ |
$[1, 0, 0, -4630013, -3995539983]$ |
\(y^2+xy=x^3-4630013x-3995539983\) |
228.2.0.? |
$[ ]$ |
| 68400.j1 |
68400eu1 |
68400.j |
68400eu |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{11} \cdot 5^{10} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$5.127064587$ |
$1$ |
|
$2$ |
$1843200$ |
$2.510216$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.93865$ |
$[0, 0, 0, -1846875, 1006506250]$ |
\(y^2=x^3-1846875x+1006506250\) |
228.2.0.? |
$[(431, 17046)]$ |
| 68400.fy1 |
68400gb1 |
68400.fy |
68400gb |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{11} \cdot 5^{4} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$368640$ |
$1.705496$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.07127$ |
$[0, 0, 0, -73875, 8052050]$ |
\(y^2=x^3-73875x+8052050\) |
228.2.0.? |
$[ ]$ |
| 91200.i1 |
91200gl1 |
91200.i |
91200gl |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{5} \cdot 5^{10} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$27.71453100$ |
$1$ |
|
$0$ |
$1843200$ |
$2.307484$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.60124$ |
$[0, -1, 0, -820833, -297950463]$ |
\(y^2=x^3-x^2-820833x-297950463\) |
228.2.0.? |
$[(1896878760107/22943, 2519620597987506268/22943)]$ |
| 91200.n1 |
91200by1 |
91200.n |
91200by |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{5} \cdot 5^{4} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$3.775650534$ |
$1$ |
|
$10$ |
$368640$ |
$1.502764$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.75571$ |
$[0, -1, 0, -32833, 2396737]$ |
\(y^2=x^3-x^2-32833x+2396737\) |
228.2.0.? |
$[(81, 512), (593, 13824)]$ |
| 91200.iy1 |
91200jj1 |
91200.iy |
91200jj |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{5} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$5.369875526$ |
$1$ |
|
$2$ |
$368640$ |
$1.502764$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.75571$ |
$[0, 1, 0, -32833, -2396737]$ |
\(y^2=x^3+x^2-32833x-2396737\) |
228.2.0.? |
$[(929, 27744)]$ |
| 91200.jd1 |
91200di1 |
91200.jd |
91200di |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{5} \cdot 5^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1843200$ |
$2.307484$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.60124$ |
$[0, 1, 0, -820833, 297950463]$ |
\(y^2=x^3+x^2-820833x+297950463\) |
228.2.0.? |
$[ ]$ |
| 139650.dj1 |
139650go1 |
139650.dj |
139650go |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{10} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$3.396123970$ |
$1$ |
|
$2$ |
$2764800$ |
$2.240719$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.36812$ |
$[1, 0, 1, -628451, -199839202]$ |
\(y^2+xy+y=x^3-628451x-199839202\) |
228.2.0.? |
$[(1551, 49792)]$ |
| 139650.fo1 |
139650de1 |
139650.fo |
139650de |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{4} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.435999$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.55300$ |
$[1, 1, 1, -25138, -1608769]$ |
\(y^2+xy+y=x^3+x^2-25138x-1608769\) |
228.2.0.? |
$[ ]$ |
| 162450.ci1 |
162450ej1 |
162450.ci |
162450ej |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{10} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$3.935308365$ |
$1$ |
|
$2$ |
$27648000$ |
$3.289288$ |
$-23891790625/1181952$ |
$1.01527$ |
$5.36180$ |
$[1, -1, 0, -41670117, 107879579541]$ |
\(y^2+xy=x^3-x^2-41670117x+107879579541\) |
228.2.0.? |
$[(23850, 3548979)]$ |
| 162450.cs1 |
162450a1 |
162450.cs |
162450a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{4} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.390286786$ |
$1$ |
|
$6$ |
$5529600$ |
$2.484570$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.55695$ |
$[1, -1, 1, -1666805, 863369997]$ |
\(y^2+xy+y=x^3-x^2-1666805x+863369997\) |
228.2.0.? |
$[(5, 29238)]$ |
| 273600.bc1 |
273600bc1 |
273600.bc |
273600bc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{11} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1.446653316$ |
$1$ |
|
$4$ |
$2949120$ |
$2.052071$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.95265$ |
$[0, 0, 0, -295500, -64416400]$ |
\(y^2=x^3-295500x-64416400\) |
228.2.0.? |
$[(1294, 41472)]$ |
| 273600.bs1 |
273600bs1 |
273600.bs |
273600bs |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{11} \cdot 5^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14745600$ |
$2.856789$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.72398$ |
$[0, 0, 0, -7387500, 8052050000]$ |
\(y^2=x^3-7387500x+8052050000\) |
228.2.0.? |
$[ ]$ |
| 273600.ot1 |
273600ot1 |
273600.ot |
273600ot |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{11} \cdot 5^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$14745600$ |
$2.856789$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.72398$ |
$[0, 0, 0, -7387500, -8052050000]$ |
\(y^2=x^3-7387500x-8052050000\) |
228.2.0.? |
$[ ]$ |
| 273600.pj1 |
273600pj1 |
273600.pj |
273600pj |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{11} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$2.889786872$ |
$1$ |
|
$2$ |
$2949120$ |
$2.052071$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.95265$ |
$[0, 0, 0, -295500, 64416400]$ |
\(y^2=x^3-295500x+64416400\) |
228.2.0.? |
$[(320, 1620)]$ |
| 344850.dw1 |
344850dw1 |
344850.dw |
344850dw |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{4} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2745600$ |
$1.661991$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.51380$ |
$[1, 0, 1, -62076, -6207302]$ |
\(y^2+xy+y=x^3-62076x-6207302\) |
228.2.0.? |
$[ ]$ |
| 344850.ee1 |
344850ee1 |
344850.ee |
344850ee |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{10} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$12.79406578$ |
$1$ |
|
$0$ |
$13728000$ |
$2.466709$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.27113$ |
$[1, 1, 1, -1551888, -775912719]$ |
\(y^2+xy+y=x^3+x^2-1551888x-775912719\) |
228.2.0.? |
$[(572619/11, 413289507/11)]$ |
| 418950.fi1 |
418950fi1 |
418950.fi |
418950fi |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{4} \cdot 7^{6} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.731065541$ |
$1$ |
|
$18$ |
$4423680$ |
$1.985304$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.76067$ |
$[1, -1, 0, -226242, 43210516]$ |
\(y^2+xy=x^3-x^2-226242x+43210516\) |
228.2.0.? |
$[(569, 9638), (164, 3158)]$ |
| 418950.nl1 |
418950nl1 |
418950.nl |
418950nl |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{10} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22118400$ |
$2.790024$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.50661$ |
$[1, -1, 1, -5656055, 5395658447]$ |
\(y^2+xy+y=x^3-x^2-5656055x+5395658447\) |
228.2.0.? |
$[ ]$ |
| 433200.o1 |
433200o1 |
433200.o |
433200o |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{10} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$18.70845537$ |
$1$ |
|
$0$ |
$82944000$ |
$3.433128$ |
$-23891790625/1181952$ |
$1.01527$ |
$5.08959$ |
$[0, -1, 0, -74080208, 255714558912]$ |
\(y^2=x^3-x^2-74080208x+255714558912\) |
228.2.0.? |
$[(4989399178/1009, 104480916212774/1009)]$ |
| 433200.kt1 |
433200kt1 |
433200.kt |
433200kt |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{4} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1.242513273$ |
$1$ |
|
$4$ |
$16588800$ |
$2.628410$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.34557$ |
$[0, 1, 0, -2963208, 2044531188]$ |
\(y^2=x^3+x^2-2963208x+2044531188\) |
228.2.0.? |
$[(348, 32490)]$ |
| 481650.el1 |
481650el1 |
481650.el |
481650el |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{4} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1.014705438$ |
$1$ |
|
$4$ |
$4515840$ |
$1.745518$ |
$-23891790625/1181952$ |
$1.01527$ |
$3.50068$ |
$[1, 0, 1, -86701, 10230248]$ |
\(y^2+xy+y=x^3-86701x+10230248\) |
228.2.0.? |
$[(-77, 4094)]$ |
| 481650.er1 |
481650er1 |
481650.er |
481650er |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{10} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22579200$ |
$2.550236$ |
$-23891790625/1181952$ |
$1.01527$ |
$4.23867$ |
$[1, 1, 1, -2167513, 1278781031]$ |
\(y^2+xy+y=x^3+x^2-2167513x+1278781031\) |
228.2.0.? |
$[ ]$ |