Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-2870025208x-59191032186412\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-2870025208xz^2-59191032186412z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-232472041875x-43149565047768750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 433200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-503237918440306080000000000$ | = | $-1 \cdot 2^{14} \cdot 3^{3} \cdot 5^{10} \cdot 19^{11} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1389310279182025}{267418692} \) | = | $-1 \cdot 2^{-2} \cdot 3^{-3} \cdot 5^{2} \cdot 19^{-5} \cdot 31^{3} \cdot 1231^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.1240319303602971045538413955$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.61746699985538125296479611374$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0156937260858383$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.9285741231862605$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.010313192310740520127835176792$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot3\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $6.1879153864443120767011060754 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $25$ = $5^2$ (exact) |
|
BSD formula
$$\begin{aligned} 6.187915386 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{25 \cdot 0.010313 \cdot 1.000000 \cdot 24}{1^2} \\ & \approx 6.187915386\end{aligned}$$
Modular invariants
Modular form 433200.2.a.jy
For more coefficients, see the Downloads section to the right.
| Modular degree: | 311040000 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
| $19$ | $4$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 6 & 13 \\ 1085 & 1021 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 567 & 1130 \\ 1120 & 731 \end{array}\right),\left(\begin{array}{rr} 569 & 1130 \\ 565 & 1089 \end{array}\right),\left(\begin{array}{rr} 761 & 10 \\ 385 & 51 \end{array}\right),\left(\begin{array}{rr} 1131 & 10 \\ 1130 & 11 \end{array}\right),\left(\begin{array}{rr} 359 & 1130 \\ 655 & 1089 \end{array}\right)$.
The torsion field $K:=\Q(E[1140])$ is a degree-$5673369600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 27075 = 3 \cdot 5^{2} \cdot 19^{2} \) |
| $3$ | split multiplicative | $4$ | \( 144400 = 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
| $5$ | additive | $2$ | \( 17328 = 2^{4} \cdot 3 \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 433200.jy
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 2850.d1, its twist by $380$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.