Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2850.d1 |
2850g1 |
2850.d |
2850g |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$7200$ |
$1.153946$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.19237$ |
$[1, 1, 0, -19875, -1086975]$ |
\(y^2+xy=x^3+x^2-19875x-1086975\) |
5.24.0-5.a.2.1, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
2850.z1 |
2850w2 |
2850.z |
2850w |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.3 |
5B.1.2 |
$1140$ |
$48$ |
$1$ |
$9.521665711$ |
$1$ |
|
$0$ |
$36000$ |
$1.958666$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$6.40626$ |
$[1, 0, 0, -496888, -134878108]$ |
\(y^2+xy=x^3-496888x-134878108\) |
5.24.0-5.a.2.2, 228.2.0.?, 1140.48.1.? |
$[(29984/5, 3867538/5)]$ |
8550.f1 |
8550e2 |
8550.f |
8550e |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{10} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$288000$ |
$2.507973$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$6.35697$ |
$[1, -1, 0, -4471992, 3641708916]$ |
\(y^2+xy=x^3-x^2-4471992x+3641708916\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
8550.bi1 |
8550bl1 |
8550.bi |
8550bl |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{4} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$1.703253$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.29037$ |
$[1, -1, 1, -178880, 29169447]$ |
\(y^2+xy+y=x^3-x^2-178880x+29169447\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
22800.bh1 |
22800cd2 |
22800.bh |
22800cd |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{10} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$2.080992027$ |
$1$ |
|
$2$ |
$864000$ |
$2.651814$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.90762$ |
$[0, -1, 0, -7950208, 8632198912]$ |
\(y^2=x^3-x^2-7950208x+8632198912\) |
5.12.0.a.2, 20.24.0-5.a.2.2, 228.2.0.?, 570.24.0.?, 1140.48.1.? |
$[(1698, 5054)]$ |
22800.cm1 |
22800ds1 |
22800.cm |
22800ds |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{4} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$0.151524370$ |
$1$ |
|
$8$ |
$172800$ |
$1.847094$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.94527$ |
$[0, 1, 0, -318008, 68930388]$ |
\(y^2=x^3+x^2-318008x+68930388\) |
5.12.0.a.2, 20.24.0-5.a.2.1, 228.2.0.?, 570.24.0.?, 1140.48.1.? |
$[(628, 10830)]$ |
54150.d1 |
54150h2 |
54150.d |
54150h |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$12960000$ |
$3.430885$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$6.29651$ |
$[1, 1, 0, -179376575, 924770189625]$ |
\(y^2+xy=x^3+x^2-179376575x+924770189625\) |
5.12.0.a.2, 60.24.0-5.a.2.4, 95.24.0.?, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
54150.cp1 |
54150cw1 |
54150.cp |
54150cw |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1.440477148$ |
$1$ |
|
$2$ |
$2592000$ |
$2.626167$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.41054$ |
$[1, 0, 0, -7175063, 7398161517]$ |
\(y^2+xy=x^3-7175063x+7398161517\) |
5.12.0.a.2, 60.24.0-5.a.2.3, 95.24.0.?, 228.2.0.?, 1140.48.1.? |
$[(1702, 9979)]$ |
68400.bh1 |
68400gl1 |
68400.bh |
68400gl |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{4} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$4.946020742$ |
$1$ |
|
$2$ |
$1382400$ |
$2.396400$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.04935$ |
$[0, 0, 0, -2862075, -1863982550]$ |
\(y^2=x^3-2862075x-1863982550\) |
5.12.0.a.2, 60.24.0-5.a.2.1, 190.24.0.?, 228.2.0.?, 1140.48.1.? |
$[(7919, 687078)]$ |
68400.et1 |
68400fh2 |
68400.et |
68400fh |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{10} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$3.201118$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.91673$ |
$[0, 0, 0, -71551875, -232997818750]$ |
\(y^2=x^3-71551875x-232997818750\) |
5.12.0.a.2, 60.24.0-5.a.2.2, 190.24.0.?, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
91200.be1 |
91200gw1 |
91200.be |
91200gw |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{4} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$4.731767695$ |
$1$ |
|
$2$ |
$1382400$ |
$2.193668$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.70915$ |
$[0, -1, 0, -1272033, 552715137]$ |
\(y^2=x^3-x^2-1272033x+552715137\) |
5.12.0.a.2, 40.24.0-5.a.2.2, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[(683, 1436)]$ |
91200.bo1 |
91200bg2 |
91200.bo |
91200bg |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$6912000$ |
$2.998386$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.55468$ |
$[0, -1, 0, -31800833, -69025790463]$ |
\(y^2=x^3-x^2-31800833x-69025790463\) |
5.12.0.a.2, 40.24.0-5.a.2.3, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[ ]$ |
91200.hx1 |
91200hq2 |
91200.hx |
91200hq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$10.07971639$ |
$1$ |
|
$0$ |
$6912000$ |
$2.998386$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.55468$ |
$[0, 1, 0, -31800833, 69025790463]$ |
\(y^2=x^3+x^2-31800833x+69025790463\) |
5.12.0.a.2, 40.24.0-5.a.2.1, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[(393097/11, 4595592/11)]$ |
91200.ih1 |
91200eq1 |
91200.ih |
91200eq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{4} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.193668$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.70915$ |
$[0, 1, 0, -1272033, -552715137]$ |
\(y^2=x^3+x^2-1272033x-552715137\) |
5.12.0.a.2, 40.24.0-5.a.2.4, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[ ]$ |
139650.cu1 |
139650fk1 |
139650.cu |
139650fk |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 7^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7980$ |
$48$ |
$1$ |
$0.206593180$ |
$1$ |
|
$8$ |
$2592000$ |
$2.126900$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.47215$ |
$[1, 0, 1, -973901, 369910748]$ |
\(y^2+xy+y=x^3-973901x+369910748\) |
5.12.0.a.2, 35.24.0-5.a.2.1, 228.2.0.?, 1140.24.1.?, 7980.48.1.? |
$[(501, 2542)]$ |
139650.fb1 |
139650dy2 |
139650.fb |
139650dy |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$12960000$ |
$2.931622$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.28727$ |
$[1, 1, 1, -24347513, 46238843531]$ |
\(y^2+xy+y=x^3+x^2-24347513x+46238843531\) |
5.12.0.a.2, 35.24.0-5.a.2.2, 228.2.0.?, 1140.24.1.?, 7980.48.1.? |
$[ ]$ |
162450.bx1 |
162450cw1 |
162450.bx |
162450cw |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{4} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20736000$ |
$3.175472$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.46452$ |
$[1, -1, 0, -64575567, -199750360959]$ |
\(y^2+xy=x^3-x^2-64575567x-199750360959\) |
5.12.0.a.2, 20.24.0-5.a.2.3, 228.2.0.?, 285.24.0.?, 1140.48.1.? |
$[ ]$ |
162450.dk1 |
162450ba2 |
162450.dk |
162450ba |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{10} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$103680000$ |
$3.980190$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$6.26936$ |
$[1, -1, 1, -1614389180, -24970409509053]$ |
\(y^2+xy+y=x^3-x^2-1614389180x-24970409509053\) |
5.12.0.a.2, 20.24.0-5.a.2.4, 228.2.0.?, 285.24.0.?, 1140.48.1.? |
$[ ]$ |
273600.dq1 |
273600dq2 |
273600.dq |
273600dq |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{10} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$1.107141379$ |
$1$ |
|
$4$ |
$55296000$ |
$3.547691$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.59376$ |
$[0, 0, 0, -286207500, 1863982550000]$ |
\(y^2=x^3-286207500x+1863982550000\) |
5.12.0.a.2, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(5854, 623808)]$ |
273600.ev1 |
273600ev1 |
273600.ev |
273600ev |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11059200$ |
$2.742973$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.82243$ |
$[0, 0, 0, -11448300, -14911860400]$ |
\(y^2=x^3-11448300x-14911860400\) |
5.12.0.a.2, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[ ]$ |
273600.lp1 |
273600lp1 |
273600.lp |
273600lp |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 19^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$0.610505150$ |
$1$ |
|
$18$ |
$11059200$ |
$2.742973$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.82243$ |
$[0, 0, 0, -11448300, 14911860400]$ |
\(y^2=x^3-11448300x+14911860400\) |
5.12.0.a.2, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(2630, 54720), (-3450, 115520)]$ |
273600.mw1 |
273600mw2 |
273600.mw |
273600mw |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{10} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$142.8677433$ |
$1$ |
|
$0$ |
$55296000$ |
$3.547691$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.59376$ |
$[0, 0, 0, -286207500, -1863982550000]$ |
\(y^2=x^3-286207500x-1863982550000\) |
5.12.0.a.2, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(664028300308094620931185756543029344929147920010971552248156384/20348811560361469198847318725, 17110220930256259263655915148842917220596097279245773955304797115635907108863115446508821539652/20348811560361469198847318725)]$ |
344850.do1 |
344850do2 |
344850.do |
344850do |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 11^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$12540$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$48600000$ |
$3.157612$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.12512$ |
$[1, 0, 1, -60123451, 179462638298]$ |
\(y^2+xy+y=x^3-60123451x+179462638298\) |
5.12.0.a.2, 55.24.0-5.a.2.1, 228.2.0.?, 1140.24.1.?, 12540.48.1.? |
$[ ]$ |
344850.ej1 |
344850ej1 |
344850.ej |
344850ej |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 11^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$12540$ |
$48$ |
$1$ |
$0.926994718$ |
$1$ |
|
$4$ |
$9720000$ |
$2.352894$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.36779$ |
$[1, 1, 1, -2404938, 1434739131]$ |
\(y^2+xy+y=x^3+x^2-2404938x+1434739131\) |
5.12.0.a.2, 55.24.0-5.a.2.2, 228.2.0.?, 1140.24.1.?, 12540.48.1.? |
$[(825, 3197)]$ |
418950.hm1 |
418950hm2 |
418950.hm |
418950hm |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{10} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$103680000$ |
$3.480927$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.34776$ |
$[1, -1, 0, -219127617, -1248667902959]$ |
\(y^2+xy=x^3-x^2-219127617x-1248667902959\) |
5.12.0.a.2, 105.24.0.?, 228.2.0.?, 1140.24.1.?, 2660.24.0.?, $\ldots$ |
$[ ]$ |
418950.ov1 |
418950ov1 |
418950.ov |
418950ov |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{4} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20736000$ |
$2.676208$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.60181$ |
$[1, -1, 1, -8765105, -9987590203]$ |
\(y^2+xy+y=x^3-x^2-8765105x-9987590203\) |
5.12.0.a.2, 105.24.0.?, 228.2.0.?, 1140.24.1.?, 2660.24.0.?, $\ldots$ |
$[ ]$ |
433200.bs1 |
433200bs1 |
433200.bs |
433200bs |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{4} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$62208000$ |
$3.319313$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.18455$ |
$[0, -1, 0, -114801008, -473482337088]$ |
\(y^2=x^3-x^2-114801008x-473482337088\) |
5.12.0.a.2, 30.24.0-5.a.2.2, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
433200.jy1 |
433200jy2 |
433200.jy |
433200jy |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{10} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$311040000$ |
$4.124031$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.92857$ |
$[0, 1, 0, -2870025208, -59191032186412]$ |
\(y^2=x^3+x^2-2870025208x-59191032186412\) |
5.12.0.a.2, 30.24.0-5.a.2.1, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
481650.dw1 |
481650dw2 |
481650.dw |
481650dw |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 13^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$14820$ |
$48$ |
$1$ |
$6.036660608$ |
$1$ |
|
$2$ |
$69120000$ |
$3.241138$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$5.07085$ |
$[1, 0, 1, -83974076, -296243229202]$ |
\(y^2+xy+y=x^3-83974076x-296243229202\) |
5.12.0.a.2, 65.24.0-5.a.2.1, 228.2.0.?, 1140.24.1.?, 14820.48.1.? |
$[(10713, 178177)]$ |
481650.fh1 |
481650fh1 |
481650.fh |
481650fh |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 13^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$14820$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$13824000$ |
$2.436420$ |
$-1389310279182025/267418692$ |
$1.01569$ |
$4.33286$ |
$[1, 1, 1, -3358963, -2371289419]$ |
\(y^2+xy+y=x^3+x^2-3358963x-2371289419\) |
5.12.0.a.2, 65.24.0-5.a.2.2, 228.2.0.?, 1140.24.1.?, 14820.48.1.? |
$[ ]$ |