Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+15889x-321609\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+15889xz^2-321609z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+20592117x-15066765882\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(79/4, -79/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 424830 \) | = | $2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-301776335787150$ | = | $-1 \cdot 2 \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{53582633}{36450} \) | = | $2^{-1} \cdot 3^{-6} \cdot 5^{-2} \cdot 13^{3} \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4670471900775841654308018227$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.43603701921435220097030367210$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9794788253190512$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.135454338963923$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.30936239046469536358614175430$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 1\cdot( 2 \cdot 3 )\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.7123486855763443630337010516 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.712348686 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.309362 \cdot 1.000000 \cdot 48}{2^2} \\ & \approx 3.712348686\end{aligned}$$
Modular invariants
Modular form 424830.2.a.gs
For more coefficients, see the Downloads section to the right.
Modular degree: | 1892352 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 737 & 106 \\ 104 & 735 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 4 \\ 674 & 9 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 124 & 1 \\ 599 & 0 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 419 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$5945425920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 2023 = 7 \cdot 17^{2} \) |
$3$ | split multiplicative | $4$ | \( 141610 = 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 84966 = 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
$7$ | additive | $20$ | \( 8670 = 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 424830gs
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1470n2, its twist by $17$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.