# Properties

 Label 1470n2 Conductor $1470$ Discriminant $-12502350$ j-invariant $$\frac{53582633}{36450}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2+xy+y=x^3+x^2+55x-43$$ y^2+xy+y=x^3+x^2+55x-43 (homogenize, simplify) $$y^2z+xyz+yz^2=x^3+x^2z+55xz^2-43z^3$$ y^2z+xyz+yz^2=x^3+x^2z+55xz^2-43z^3 (dehomogenize, simplify) $$y^2=x^3+71253x-3066714$$ y^2=x^3+71253x-3066714 (homogenize, minimize)

sage: E = EllipticCurve([1, 1, 1, 55, -43])

gp: E = ellinit([1, 1, 1, 55, -43])

magma: E := EllipticCurve([1, 1, 1, 55, -43]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{3}{4}, -\frac{7}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1470$$ = $2 \cdot 3 \cdot 5 \cdot 7^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-12502350$ = $-1 \cdot 2 \cdot 3^{6} \cdot 5^{2} \cdot 7^{3}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{53582633}{36450}$$ = $2^{-1} \cdot 3^{-6} \cdot 5^{-2} \cdot 13^{3} \cdot 29^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.050440518049476125306034513718\dots$ Stable Faltings height: $-0.43603701921435220097030367214\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $1.2755338124795127617019306592\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $8$  = $1\cdot2\cdot2\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.5510676249590255234038613183$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} + 2 q^{11} - q^{12} + 2 q^{13} - q^{15} + q^{16} - 4 q^{17} + q^{18} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 384 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$3$ $2$ $I_{6}$ Non-split multiplicative 1 1 6 6
$5$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$7$ $2$ $III$ Additive -1 2 3 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1
sage: gens = [[837, 4, 836, 5], [1, 2, 2, 5], [737, 106, 104, 735], [1, 4, 0, 1], [337, 4, 674, 9], [281, 4, 562, 9], [124, 1, 599, 0], [2, 1, 419, 0], [1, 0, 4, 1], [3, 4, 8, 11]]

sage: GL(2,Integers(840)).subgroup(gens)

magma: Gens := [[837, 4, 836, 5], [1, 2, 2, 5], [737, 106, 104, 735], [1, 4, 0, 1], [337, 4, 674, 9], [281, 4, 562, 9], [124, 1, 599, 0], [2, 1, 419, 0], [1, 0, 4, 1], [3, 4, 8, 11]];

magma: sub<GL(2,Integers(840))|Gens>;

The image of the adelic Galois representation has level $840$, index $12$, genus $0$, and generators

$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 737 & 106 \\ 104 & 735 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 4 \\ 674 & 9 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 124 & 1 \\ 599 & 0 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 419 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 split nonsplit split add 2 0 7 - 1 0 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 1470n consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-14})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $4$ 4.2.2469600.1 $$\Z/4\Z$$ Not in database $8$ 8.0.111027526041600.14 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.390331146240000.57 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.2.2572983630000.6 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/8\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.