Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-343539230x+2343753864897\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-343539230xz^2+2343753864897z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5496627675x+149994750725750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-85189/4, 85185/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 418950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $221949667340019214804687500$ | = | $2^{2} \cdot 3^{26} \cdot 5^{10} \cdot 7^{6} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( \frac{3345930611358906241}{165622259047500} \) | = | $2^{-2} \cdot 3^{-20} \cdot 5^{-4} \cdot 11^{6} \cdot 19^{-1} \cdot 47^{3} \cdot 263^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8144685629991732089548109356$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4874883879204115234041322788$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.081271340032757$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.451933199869545$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.055286226421197017560195512131$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.5383184909566091238525127764 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 3.538318491 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.055286 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 3.538318491\end{aligned}$$
Modular invariants
Modular form 418950.2.a.mc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 212336640 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $3$ | $4$ | $I_{20}^{*}$ | additive | -1 | 2 | 26 | 20 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 2279 & 0 \\ 0 & 15959 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 288 & 15113 \\ 13993 & 2640 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5419 & 5418 \\ 4858 & 8275 \end{array}\right),\left(\begin{array}{rr} 6383 & 6832 \\ 5012 & 11367 \end{array}\right),\left(\begin{array}{rr} 10639 & 6832 \\ 6076 & 11367 \end{array}\right),\left(\begin{array}{rr} 1688 & 11403 \\ 2765 & 9122 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 209475 = 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
| $3$ | additive | $8$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
| $5$ | additive | $18$ | \( 16758 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
| $7$ | additive | $26$ | \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 22050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 418950.mc
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 570.i2, its twist by $105$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.