Properties

Label 418950.m1
Conductor $418950$
Discriminant $-2.181\times 10^{38}$
j-invariant \( -\frac{138357846491853121383730987168838623}{55816105091607428996184145920} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-x^2-16970992908417x+26919090475475527741\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-x^2z-16970992908417xz^2+26919090475475527741z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-271535886534675x+1722821518894547240750\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 0, -16970992908417, 26919090475475527741])
 
Copy content gp:E = ellinit([1, -1, 0, -16970992908417, 26919090475475527741])
 
Copy content magma:E := EllipticCurve([1, -1, 0, -16970992908417, 26919090475475527741]);
 
Copy content oscar:E = elliptic_curve([1, -1, 0, -16970992908417, 26919090475475527741])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: $N$  =  \( 418950 \) = $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $-218072650466268168722013392732160000000$ = $-1 \cdot 2^{81} \cdot 3^{11} \cdot 5^{7} \cdot 7^{3} \cdot 19 $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( -\frac{138357846491853121383730987168838623}{55816105091607428996184145920} \) = $-1 \cdot 2^{-81} \cdot 3^{-5} \cdot 5^{-1} \cdot 19^{-1} \cdot 322351^{3} \cdot 1604497^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $6.3197920553680332683928851994$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $4.4792894175530999091185447285$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.082511858129502$
Szpiro ratio: $\sigma_{m}$ ≈ $7.956573745607039$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 0$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 0$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ = $1$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.0055118339596330270673713378044$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 16 $  = $ 1\cdot2^{2}\cdot2\cdot2\cdot1 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $1$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L(E,1)$ ≈ $0.088189343354128433077941404870 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  =  $1$    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 0.088189343 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.005512 \cdot 1.000000 \cdot 16}{1^2} \\ & \approx 0.088189343\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 0, -16970992908417, 26919090475475527741]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 0, -16970992908417, 26919090475475527741]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 418950.2.a.m

\( q - q^{2} + q^{4} - q^{8} - 5 q^{11} - q^{13} + q^{16} - 6 q^{17} + q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 26266705920
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $1$ $I_{81}$ nonsplit multiplicative 1 1 81 81
$3$ $4$ $I_{5}^{*}$ additive -1 2 11 5
$5$ $2$ $I_{1}^{*}$ additive 1 2 7 1
$7$ $2$ $III$ additive -1 2 3 0
$19$ $1$ $I_{1}$ split multiplicative -1 1 1 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[9577, 2, 9577, 3], [1, 1, 15959, 0], [1, 0, 2, 1], [1, 2, 0, 1], [3991, 2, 0, 1], [15959, 2, 15958, 3], [13681, 2, 13681, 3], [5321, 2, 5321, 3], [4201, 2, 4201, 3], [7981, 2, 7981, 3]] GL(2,Integers(15960)).subgroup(gens)
 
Copy content magma:Gens := [[9577, 2, 9577, 3], [1, 1, 15959, 0], [1, 0, 2, 1], [1, 2, 0, 1], [3991, 2, 0, 1], [15959, 2, 15958, 3], [13681, 2, 13681, 3], [5321, 2, 5321, 3], [4201, 2, 4201, 3], [7981, 2, 7981, 3]]; sub<GL(2,Integers(15960))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $2$, genus $0$, and generators

$\left(\begin{array}{rr} 9577 & 2 \\ 9577 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 15959 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3991 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15959 & 2 \\ 15958 & 3 \end{array}\right),\left(\begin{array}{rr} 13681 & 2 \\ 13681 & 3 \end{array}\right),\left(\begin{array}{rr} 5321 & 2 \\ 5321 & 3 \end{array}\right),\left(\begin{array}{rr} 4201 & 2 \\ 4201 & 3 \end{array}\right),\left(\begin{array}{rr} 7981 & 2 \\ 7981 & 3 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[15960])$ is a degree-$4392005035622400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ nonsplit multiplicative $4$ \( 29925 = 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \)
$3$ additive $8$ \( 23275 = 5^{2} \cdot 7^{2} \cdot 19 \)
$5$ additive $18$ \( 16758 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \)
$7$ additive $20$ \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \)
$19$ split multiplicative $20$ \( 22050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 418950.m consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 27930.bi1, its twist by $-15$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.