Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
27930.x1 |
27930r1 |
27930.x |
27930r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{5} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$255.6865751$ |
$1$ |
|
$0$ |
$957640320$ |
$5.938721$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$9.61460$ |
$[1, 1, 0, -3695905122277, 2735775223839669901]$ |
\(y^2+xy=x^3+x^2-3695905122277x+2735775223839669901\) |
15960.2.0.? |
$[(-9331316561601011056892159080465522987909459856960441495224996454417487428210705334148599970072736589726425197311/89886096315316163999821419499103905570053417425893435, 1697973720910775418043835076714831019974976861259144190351137597550142955438711841484590654311271500350820529229049809831062959600054494514301135058071065270390126214467/89886096315316163999821419499103905570053417425893435)]$ |
27930.bi1 |
27930bj1 |
27930.bi |
27930bj |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{5} \cdot 5 \cdot 7^{3} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$136805760$ |
$4.965767$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$8.47413$ |
$[1, 0, 1, -75426635149, -7976031835990648]$ |
\(y^2+xy+y=x^3-75426635149x-7976031835990648\) |
15960.2.0.? |
$[ ]$ |
83790.ct1 |
83790dz1 |
83790.ct |
83790dz |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{11} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7661122560$ |
$6.488029$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$9.26430$ |
$[1, -1, 1, -33263146100498, -73865964306817187823]$ |
\(y^2+xy+y=x^3-x^2-33263146100498x-73865964306817187823\) |
15960.2.0.? |
$[ ]$ |
83790.ep1 |
83790ft1 |
83790.ep |
83790ft |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{11} \cdot 5 \cdot 7^{3} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1094446080$ |
$5.515076$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$8.23436$ |
$[1, -1, 1, -678839716337, 215352859571747489]$ |
\(y^2+xy+y=x^3-x^2-678839716337x+215352859571747489\) |
15960.2.0.? |
$[ ]$ |
139650.gr1 |
139650eu1 |
139650.gr |
139650eu |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{5} \cdot 5^{7} \cdot 7^{3} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3283338240$ |
$5.770485$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$8.13802$ |
$[1, 1, 1, -1885665878713, -997003979498830969]$ |
\(y^2+xy+y=x^3+x^2-1885665878713x-997003979498830969\) |
15960.2.0.? |
$[ ]$ |
139650.jn1 |
139650co1 |
139650.jn |
139650co |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{5} \cdot 5^{7} \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22983367680$ |
$6.743439$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$9.12354$ |
$[1, 0, 0, -92397628056938, 341972087775214851492]$ |
\(y^2+xy=x^3-92397628056938x+341972087775214851492\) |
15960.2.0.? |
$[ ]$ |
223440.d1 |
223440eg1 |
223440.d |
223440eg |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{93} \cdot 3^{5} \cdot 5 \cdot 7^{3} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$85.72669742$ |
$1$ |
|
$0$ |
$3283338240$ |
$5.658913$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$7.71877$ |
$[0, -1, 0, -1206826162376, 510466037503401456]$ |
\(y^2=x^3-x^2-1206826162376x+510466037503401456\) |
15960.2.0.? |
$[(224332983649466121352351992418169672650/18168963527709191, 387691263516287029072050124399718466716377939974322324586/18168963527709191)]$ |
223440.fn1 |
223440d1 |
223440.fn |
223440d |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{93} \cdot 3^{5} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$169$ |
$13$ |
$0$ |
$22983367680$ |
$6.631866$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$8.66670$ |
$[0, 1, 0, -59134481956440, -175089732594702786540]$ |
\(y^2=x^3+x^2-59134481956440x-175089732594702786540\) |
15960.2.0.? |
$[ ]$ |
418950.m1 |
418950m1 |
418950.m |
418950m |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{11} \cdot 5^{7} \cdot 7^{3} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26266705920$ |
$6.319794$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$7.95657$ |
$[1, -1, 0, -16970992908417, 26919090475475527741]$ |
\(y^2+xy=x^3-x^2-16970992908417x+26919090475475527741\) |
15960.2.0.? |
$[ ]$ |
418950.s1 |
418950s1 |
418950.s |
418950s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{81} \cdot 3^{11} \cdot 5^{7} \cdot 7^{9} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15960$ |
$2$ |
$0$ |
$706.4359219$ |
$1$ |
|
$0$ |
$183866941440$ |
$7.292747$ |
$-138357846491853121383730987168838623/55816105091607428996184145920$ |
$1.08251$ |
$8.85847$ |
$[1, -1, 0, -831578652512442, -9233246369930800990284]$ |
\(y^2+xy=x^3-x^2-831578652512442x-9233246369930800990284\) |
15960.2.0.? |
$[(100932380270193181679971450326607094538836696166895716577718987675995171000014317494094185660916398946971501801153162194750835851944990135943381684092396788027891720906219725812958229455536946977487260211653285399773261075002928865788674172246824220901184241116045125670999513253428753422071138387815724864449/1569050404249125375095736607512147978860843607863882093713361901141778830791680719074496500700710843541836408142622651229727031056872364575581433888879, 617766452549134570663461623969918058272234465346004212805136058793638260073789927143630390673611324035605086835517676489066443593898734390026147486868067938181435489443938240399202272866186185165081468448458486566254529410138182058470537364776813441879649964810291403519809650488465440502131358413897949611740973685821892491895531381352824244599714264938164483973845893424812922088429148965984554981366228041509659733036063954936894229140435267764710803498636202/1569050404249125375095736607512147978860843607863882093713361901141778830791680719074496500700710843541836408142622651229727031056872364575581433888879)]$ |