Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-17700x-1129000\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-17700xz^2-1129000z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-17700x-1129000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(29461/169, 2286441/2197)$ | $10.122195472239311866103643786$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 417600 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $-195750000000000$ | = | $-1 \cdot 2^{10} \cdot 3^{3} \cdot 5^{12} \cdot 29 $ |
|
| j-invariant: | $j$ | = | \( -\frac{1419579648}{453125} \) | = | $-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{-6} \cdot 29^{-1} \cdot 59^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4552495836992991532451351060$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.20174509515139954808508263773$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8379680003743946$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1985734672046586$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.122195472239311866103643786$ |
|
| Real period: | $\Omega$ | ≈ | $0.20363915868806051495905122062$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.2451014801716354882316493513 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.245101480 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.203639 \cdot 10.122195 \cdot 4}{1^2} \\ & \approx 8.245101480\end{aligned}$$
Modular invariants
Modular form 417600.2.a.gk
For more coefficients, see the Downloads section to the right.
| Modular degree: | 884736 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $5$ | $2$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
| $29$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3480 = 2^{3} \cdot 3 \cdot 5 \cdot 29 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1919 & 690 \\ 1920 & 689 \end{array}\right),\left(\begin{array}{rr} 1739 & 0 \\ 0 & 3479 \end{array}\right),\left(\begin{array}{rr} 3475 & 6 \\ 3474 & 7 \end{array}\right),\left(\begin{array}{rr} 2609 & 0 \\ 0 & 3479 \end{array}\right),\left(\begin{array}{rr} 2783 & 0 \\ 0 & 3479 \end{array}\right),\left(\begin{array}{rr} 2754 & 545 \\ 635 & 1344 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 3449 & 690 \\ 1995 & 2069 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3480])$ is a degree-$1508651827200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
| $3$ | additive | $6$ | \( 46400 = 2^{6} \cdot 5^{2} \cdot 29 \) |
| $5$ | additive | $18$ | \( 16704 = 2^{6} \cdot 3^{2} \cdot 29 \) |
| $29$ | split multiplicative | $30$ | \( 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 417600.gk
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 5220.f1, its twist by $120$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.