| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 5220.f1 |
5220a2 |
5220.f |
5220a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$174$ |
$16$ |
$0$ |
$2.310185007$ |
$1$ |
|
$0$ |
$3456$ |
$0.853263$ |
$-1419579648/453125$ |
$0.83797$ |
$3.99205$ |
$[0, 0, 0, -1593, -30483]$ |
\(y^2=x^3-1593x-30483\) |
3.8.0-3.a.1.1, 174.16.0.? |
$[(489/2, 10125/2)]$ |
| 5220.m1 |
5220d1 |
5220.m |
5220d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$174$ |
$16$ |
$0$ |
$0.602945988$ |
$1$ |
|
$10$ |
$1152$ |
$0.303957$ |
$-1419579648/453125$ |
$0.83797$ |
$3.22202$ |
$[0, 0, 0, -177, 1129]$ |
\(y^2=x^3-177x+1129\) |
3.8.0-3.a.1.2, 174.16.0.? |
$[(8, 15)]$ |
| 20880.s1 |
20880bg2 |
20880.s |
20880bg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$348$ |
$16$ |
$0$ |
$1.336773575$ |
$1$ |
|
$2$ |
$13824$ |
$0.853263$ |
$-1419579648/453125$ |
$0.83797$ |
$3.43566$ |
$[0, 0, 0, -1593, 30483]$ |
\(y^2=x^3-1593x+30483\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 174.8.0.?, 348.16.0.? |
$[(34, 125)]$ |
| 20880.bx1 |
20880bl1 |
20880.bx |
20880bl |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$348$ |
$16$ |
$0$ |
$0.708037513$ |
$1$ |
|
$4$ |
$4608$ |
$0.303957$ |
$-1419579648/453125$ |
$0.83797$ |
$2.77295$ |
$[0, 0, 0, -177, -1129]$ |
\(y^2=x^3-177x-1129\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 174.8.0.?, 348.16.0.? |
$[(22, 75)]$ |
| 26100.t1 |
26100f2 |
26100.t |
26100f |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{12} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$870$ |
$16$ |
$0$ |
$2.632143911$ |
$1$ |
|
$2$ |
$82944$ |
$1.657982$ |
$-1419579648/453125$ |
$0.83797$ |
$4.30983$ |
$[0, 0, 0, -39825, -3810375]$ |
\(y^2=x^3-39825x-3810375\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 174.8.0.?, 870.16.0.? |
$[(240, 675)]$ |
| 26100.w1 |
26100a1 |
26100.w |
26100a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{12} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$870$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$1.108677$ |
$-1419579648/453125$ |
$0.83797$ |
$3.66166$ |
$[0, 0, 0, -4425, 141125]$ |
\(y^2=x^3-4425x+141125\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 174.8.0.?, 870.16.0.? |
$[ ]$ |
| 83520.bf1 |
83520e1 |
83520.bf |
83520e |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{6} \cdot 29 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$2.084677491$ |
$1$ |
|
$8$ |
$36864$ |
$0.650531$ |
$-1419579648/453125$ |
$0.83797$ |
$2.80073$ |
$[0, 0, 0, -708, 9032]$ |
\(y^2=x^3-708x+9032\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 174.8.0.?, 696.16.0.? |
$[(-19, 125), (49/2, 375/2)]$ |
| 83520.cc1 |
83520dn1 |
83520.cc |
83520dn |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$3.924530240$ |
$1$ |
|
$0$ |
$36864$ |
$0.650531$ |
$-1419579648/453125$ |
$0.83797$ |
$2.80073$ |
$[0, 0, 0, -708, -9032]$ |
\(y^2=x^3-708x-9032\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 174.8.0.?, 696.16.0.? |
$[(421/3, 6625/3)]$ |
| 83520.er1 |
83520k2 |
83520.er |
83520k |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$110592$ |
$1.199837$ |
$-1419579648/453125$ |
$0.83797$ |
$3.38237$ |
$[0, 0, 0, -6372, -243864]$ |
\(y^2=x^3-6372x-243864\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 174.8.0.?, 696.16.0.? |
$[ ]$ |
| 83520.fi1 |
83520dt2 |
83520.fi |
83520dt |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$0.899769401$ |
$1$ |
|
$2$ |
$110592$ |
$1.199837$ |
$-1419579648/453125$ |
$0.83797$ |
$3.38237$ |
$[0, 0, 0, -6372, 243864]$ |
\(y^2=x^3-6372x+243864\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 174.8.0.?, 696.16.0.? |
$[(93, 675)]$ |
| 104400.cs1 |
104400ct1 |
104400.cs |
104400ct |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{12} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$110592$ |
$1.108677$ |
$-1419579648/453125$ |
$0.83797$ |
$3.22240$ |
$[0, 0, 0, -4425, -141125]$ |
\(y^2=x^3-4425x-141125\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 174.8.0.?, 1740.16.0.? |
$[ ]$ |
| 104400.db1 |
104400de2 |
104400.db |
104400de |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{12} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$4.155960352$ |
$1$ |
|
$2$ |
$331776$ |
$1.657982$ |
$-1419579648/453125$ |
$0.83797$ |
$3.79281$ |
$[0, 0, 0, -39825, 3810375]$ |
\(y^2=x^3-39825x+3810375\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 174.8.0.?, 1740.16.0.? |
$[(-186, 2187)]$ |
| 151380.j1 |
151380bf2 |
151380.j |
151380bf |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 29^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$174$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$2.536911$ |
$-1419579648/453125$ |
$0.83797$ |
$4.55892$ |
$[0, 0, 0, -1339713, -743449887]$ |
\(y^2=x^3-1339713x-743449887\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 87.8.0.?, 174.16.0.? |
$[ ]$ |
| 151380.v1 |
151380y1 |
151380.v |
151380y |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 29^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$174$ |
$16$ |
$0$ |
$0.443839591$ |
$1$ |
|
$2$ |
$967680$ |
$1.987604$ |
$-1419579648/453125$ |
$0.83797$ |
$4.00628$ |
$[0, 0, 0, -148857, 27535181]$ |
\(y^2=x^3-148857x+27535181\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 87.8.0.?, 174.16.0.? |
$[(812, 21025)]$ |
| 255780.v1 |
255780v1 |
255780.v |
255780v |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 7^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1218$ |
$16$ |
$0$ |
$2.650125181$ |
$1$ |
|
$2$ |
$435456$ |
$1.276913$ |
$-1419579648/453125$ |
$0.83797$ |
$3.15263$ |
$[0, 0, 0, -8673, -387247]$ |
\(y^2=x^3-8673x-387247\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 174.8.0.?, 1218.16.0.? |
$[(379, 7125)]$ |
| 255780.bj1 |
255780bj2 |
255780.bj |
255780bj |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 7^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1218$ |
$16$ |
$0$ |
$1.729408699$ |
$1$ |
|
$2$ |
$1306368$ |
$1.826218$ |
$-1419579648/453125$ |
$0.83797$ |
$3.68199$ |
$[0, 0, 0, -78057, 10455669]$ |
\(y^2=x^3-78057x+10455669\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 174.8.0.?, 1218.16.0.? |
$[(-12, 3375)]$ |
| 417600.fq1 |
417600fq2 |
417600.fq |
417600fq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{12} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2654208$ |
$2.004555$ |
$-1419579648/453125$ |
$0.83797$ |
$3.70789$ |
$[0, 0, 0, -159300, 30483000]$ |
\(y^2=x^3-159300x+30483000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[ ]$ |
| 417600.gk1 |
417600gk1 |
417600.gk |
417600gk |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{12} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$10.12219547$ |
$1$ |
|
$0$ |
$884736$ |
$1.455250$ |
$-1419579648/453125$ |
$0.83797$ |
$3.19857$ |
$[0, 0, 0, -17700, -1129000]$ |
\(y^2=x^3-17700x-1129000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[(29461/13, 2286441/13)]$ |
| 417600.jg1 |
417600jg1 |
417600.jg |
417600jg |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{12} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$884736$ |
$1.455250$ |
$-1419579648/453125$ |
$0.83797$ |
$3.19857$ |
$[0, 0, 0, -17700, 1129000]$ |
\(y^2=x^3-17700x+1129000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[ ]$ |
| 417600.ka1 |
417600ka2 |
417600.ka |
417600ka |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{12} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$16.42484327$ |
$1$ |
|
$0$ |
$2654208$ |
$2.004555$ |
$-1419579648/453125$ |
$0.83797$ |
$3.70789$ |
$[0, 0, 0, -159300, -30483000]$ |
\(y^2=x^3-159300x-30483000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[(47168661/311, 84085011441/311)]$ |