Show commands: SageMath
Rank
The elliptic curves in class 41650cf have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 41650cf do not have complex multiplication.Modular form 41650.2.a.cf
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 41650cf
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 41650.bp2 | 41650cf1 | \([1, 0, 0, -3128063, -2129649383]\) | \(1841373668746009/31443200\) | \(57800953700000000\) | \([2]\) | \(1382400\) | \(2.3458\) | \(\Gamma_0(N)\)-optimal |
| 41650.bp3 | 41650cf2 | \([1, 0, 0, -3030063, -2269299383]\) | \(-1673672305534489/241375690000\) | \(-443712633637656250000\) | \([2]\) | \(2764800\) | \(2.6924\) | |
| 41650.bp1 | 41650cf3 | \([1, 0, 0, -5106438, 873211492]\) | \(8010684753304969/4456448000000\) | \(8192135168000000000000\) | \([2]\) | \(4147200\) | \(2.8951\) | |
| 41650.bp4 | 41650cf4 | \([1, 0, 0, 19981562, 6919419492]\) | \(479958568556831351/289000000000000\) | \(-531258765625000000000000\) | \([2]\) | \(8294400\) | \(3.2417\) |