Properties

Label 41574.g
Number of curves $1$
Conductor $41574$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 41574.g1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(13\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41574.g do not have complex multiplication.

Modular form 41574.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 3 q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} + 3 q^{10} - 5 q^{11} + q^{12} + 4 q^{14} - 3 q^{15} + q^{16} + 3 q^{17} - q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 41574.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41574.g1 41574j1 \([1, 0, 1, -485, -700]\) \(5725732069/3228012\) \(7091942364\) \([]\) \(55296\) \(0.58025\) \(\Gamma_0(N)\)-optimal