Properties

Label 41280.cs
Number of curves $4$
Conductor $41280$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 41280.cs have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41280.cs do not have complex multiplication.

Modular form 41280.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 4 q^{7} + q^{9} - 6 q^{13} + q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 41280.cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41280.cs1 41280dl4 \([0, 1, 0, -1039265, -408129825]\) \(947094050118111698/20769216075\) \(2722262689382400\) \([2]\) \(655360\) \(2.0774\)  
41280.cs2 41280dl2 \([0, 1, 0, -67265, -5916225]\) \(513591322675396/68238500625\) \(4472078376960000\) \([2, 2]\) \(327680\) \(1.7308\)  
41280.cs3 41280dl1 \([0, 1, 0, -17265, 773775]\) \(34739908901584/4081640625\) \(66873600000000\) \([2]\) \(163840\) \(1.3843\) \(\Gamma_0(N)\)-optimal
41280.cs4 41280dl3 \([0, 1, 0, 104735, -31062625]\) \(969360123836302/3748293231075\) \(-491296290383462400\) \([4]\) \(655360\) \(2.0774\)