Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+638868x-5666865584\)
|
(homogenize, simplify) |
\(y^2z=x^3+638868xz^2-5666865584z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+638868x-5666865584\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(17712919596731954165/4626971125116649, 72376118452950034723654599873/314735103438218054964107)$ | $44.048041527269563255454197937$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 411840 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-13889662265623566090240$ | = | $-1 \cdot 2^{45} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{4074304020054813}{1962402098708480} \) | = | $2^{-27} \cdot 3^{3} \cdot 5^{-1} \cdot 11^{-3} \cdot 13^{-3} \cdot 53239^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9278682017047323822056023592$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6134943586977869952309428678$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0406662835130327$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.520203104005908$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $44.048041527269563255454197937$ |
|
Real period: | $\Omega$ | ≈ | $0.058698122619049258650545944328$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.342149370786570413280209385 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.342149371 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.058698 \cdot 44.048042 \cdot 4}{1^2} \\ & \approx 10.342149371\end{aligned}$$
Modular invariants
Modular form 411840.2.a.li
For more coefficients, see the Downloads section to the right.
Modular degree: | 20901888 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{35}^{*}$ | additive | -1 | 6 | 45 | 27 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 10297 & 6 \\ 13731 & 19 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 7801 & 6 \\ 6243 & 19 \end{array}\right),\left(\begin{array}{rr} 8579 & 17154 \\ 8577 & 17141 \end{array}\right),\left(\begin{array}{rr} 17155 & 6 \\ 17154 & 7 \end{array}\right),\left(\begin{array}{rr} 16446 & 721 \\ 11443 & 12174 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 2641 & 6 \\ 7923 & 19 \end{array}\right),\left(\begin{array}{rr} 4289 & 17154 \\ 12867 & 17141 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$765176315904000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2145 = 3 \cdot 5 \cdot 11 \cdot 13 \) |
$3$ | additive | $6$ | \( 320 = 2^{6} \cdot 5 \) |
$5$ | split multiplicative | $6$ | \( 82368 = 2^{6} \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 37440 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 31680 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 411840.li
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 12870.u2, its twist by $24$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.