Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-798406634576x+274589682009856798\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-798406634576xz^2+274589682009856798z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1034734998409875x+12811259308056874008750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 409150 \) | = | $2 \cdot 5^{2} \cdot 7^{2} \cdot 167$ |
|
| Discriminant: | $\Delta$ | = | $-2818454572395344691200000000$ | = | $-1 \cdot 2^{41} \cdot 5^{8} \cdot 7^{6} \cdot 167^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1224751130206834971784807336585}{61328559574089728} \) | = | $-1 \cdot 2^{-41} \cdot 5 \cdot 167^{-2} \cdot 29399^{3} \cdot 212827^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.1894199705771253986724609634$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.1435062877600684963859450362$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0542331792306563$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.2614484926601195$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.024617477856708971998671465996$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot3\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.1816389371220306559362303678 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.181638937 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.024617 \cdot 1.000000 \cdot 12}{1^2} \\ & \approx 1.181638937\end{aligned}$$
Modular invariants
Modular form 409150.2.a.bg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2766614400 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{41}$ | nonsplit multiplicative | 1 | 1 | 41 | 41 |
| $5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $167$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 8.2.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 8.2.0.a.1, level \( 8 = 2^{3} \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 7 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[8])$ is a degree-$768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 16366 = 2 \cdot 7^{2} \cdot 167 \) |
| $7$ | additive | $26$ | \( 8350 = 2 \cdot 5^{2} \cdot 167 \) |
| $41$ | good | $2$ | \( 204575 = 5^{2} \cdot 7^{2} \cdot 167 \) |
| $167$ | split multiplicative | $168$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 409150.bg consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 8350.f1, its twist by $-35$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.