| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 8350.b1 |
8350c1 |
8350.b |
8350c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 167 \) |
\( - 2^{41} \cdot 5^{8} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$121$ |
$11$ |
$0$ |
$7685040$ |
$4.216461$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$9.09808$ |
$[1, 1, 0, -16294012950, -800559991923500]$ |
\(y^2+xy=x^3+x^2-16294012950x-800559991923500\) |
8.2.0.a.1 |
$[ ]$ |
| 8350.f1 |
8350e1 |
8350.f |
8350e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 167 \) |
\( - 2^{41} \cdot 5^{2} \cdot 167^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.732665031$ |
$1$ |
|
$2$ |
$1537008$ |
$3.411747$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$8.02869$ |
$[1, 0, 0, -651760518, -6404479935388]$ |
\(y^2+xy=x^3-651760518x-6404479935388\) |
8.2.0.a.1 |
$[(504748, 357881130)]$ |
| 66800.f1 |
66800l1 |
66800.f |
66800l |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 167 \) |
\( - 2^{53} \cdot 5^{2} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36888192$ |
$4.104897$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.27461$ |
$[0, -1, 0, -10428168288, 409886715864832]$ |
\(y^2=x^3-x^2-10428168288x+409886715864832\) |
8.2.0.a.1 |
$[ ]$ |
| 66800.p1 |
66800v1 |
66800.p |
66800v |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 167 \) |
\( - 2^{53} \cdot 5^{8} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184440960$ |
$4.909615$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$8.14383$ |
$[0, 1, 0, -260704207208, 51235318074689588]$ |
\(y^2=x^3+x^2-260704207208x+51235318074689588\) |
8.2.0.a.1 |
$[ ]$ |
| 75150.f1 |
75150j1 |
75150.f |
75150j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 167 \) |
\( - 2^{41} \cdot 3^{6} \cdot 5^{2} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$46110240$ |
$3.961052$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.04455$ |
$[1, -1, 0, -5865844662, 172920958255476]$ |
\(y^2+xy=x^3-x^2-5865844662x+172920958255476\) |
8.2.0.a.1 |
$[ ]$ |
| 75150.bo1 |
75150bs1 |
75150.bo |
75150bs |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 167 \) |
\( - 2^{41} \cdot 3^{6} \cdot 5^{8} \cdot 167^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.216281741$ |
$1$ |
|
$0$ |
$230551200$ |
$4.765770$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.90465$ |
$[1, -1, 1, -146646116555, 21614973135817947]$ |
\(y^2+xy+y=x^3-x^2-146646116555x+21614973135817947\) |
8.2.0.a.1 |
$[(10785531/7, 235863270/7)]$ |
| 267200.o1 |
267200o1 |
267200.o |
267200o |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 167 \) |
\( - 2^{59} \cdot 5^{2} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$36$ |
$2, 3$ |
$0$ |
$295105536$ |
$4.451469$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$6.80038$ |
$[0, -1, 0, -41712673153, -3279052014245503]$ |
\(y^2=x^3-x^2-41712673153x-3279052014245503\) |
8.2.0.a.1 |
$[ ]$ |
| 267200.p1 |
267200p1 |
267200.p |
267200p |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 167 \) |
\( - 2^{59} \cdot 5^{8} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1475527680$ |
$5.256187$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.57317$ |
$[0, -1, 0, -1042816828833, 409883587414345537]$ |
\(y^2=x^3-x^2-1042816828833x+409883587414345537\) |
8.2.0.a.1 |
$[ ]$ |
| 267200.bj1 |
267200bj1 |
267200.bj |
267200bj |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 167 \) |
\( - 2^{59} \cdot 5^{8} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$81$ |
$3$ |
$0$ |
$1475527680$ |
$5.256187$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.57317$ |
$[0, 1, 0, -1042816828833, -409883587414345537]$ |
\(y^2=x^3+x^2-1042816828833x-409883587414345537\) |
8.2.0.a.1 |
$[ ]$ |
| 267200.bm1 |
267200bm1 |
267200.bm |
267200bm |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 167 \) |
\( - 2^{59} \cdot 5^{2} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$295105536$ |
$4.451469$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$6.80038$ |
$[0, 1, 0, -41712673153, 3279052014245503]$ |
\(y^2=x^3+x^2-41712673153x+3279052014245503\) |
8.2.0.a.1 |
$[ ]$ |
| 409150.bg1 |
409150bg1 |
409150.bg |
409150bg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 167 \) |
\( - 2^{41} \cdot 5^{8} \cdot 7^{6} \cdot 167^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2766614400$ |
$5.189423$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$7.26145$ |
$[1, 0, 1, -798406634576, 274589682009856798]$ |
\(y^2+xy+y=x^3-798406634576x+274589682009856798\) |
8.2.0.a.1 |
$[ ]$ |
| 409150.cl1 |
409150cl1 |
409150.cl |
409150cl |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 167 \) |
\( - 2^{41} \cdot 5^{2} \cdot 7^{6} \cdot 167^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.050833746$ |
$1$ |
|
$4$ |
$553322880$ |
$4.384705$ |
$-1224751130206834971784807336585/61328559574089728$ |
$1.05423$ |
$6.51414$ |
$[1, 1, 1, -31936265383, 2196704681572701]$ |
\(y^2+xy+y=x^3+x^2-31936265383x+2196704681572701\) |
8.2.0.a.1 |
$[(103179, -50022)]$ |