Properties

Label 405720k
Number of curves $2$
Conductor $405720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 405720k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
405720.k1 405720k1 \([0, 0, 0, -4263, 29498]\) \(10536048/5635\) \(4582325018880\) \([2]\) \(737280\) \(1.1207\) \(\Gamma_0(N)\)-optimal
405720.k2 405720k2 \([0, 0, 0, 16317, 231182]\) \(147704148/92575\) \(-301124215526400\) \([2]\) \(1474560\) \(1.4673\)  

Rank

sage: E.rank()
 

The elliptic curves in class 405720k have rank \(1\).

Complex multiplication

The elliptic curves in class 405720k do not have complex multiplication.

Modular form 405720.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4q^{11} - 4q^{13} - 2q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.