Properties

Label 4032.be
Number of curves $4$
Conductor $4032$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4032.be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4032.be do not have complex multiplication.

Modular form 4032.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4032.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.be1 4032f3 \([0, 0, 0, -5484, -156112]\) \(381775972/567\) \(27088846848\) \([2]\) \(4096\) \(0.90284\)  
4032.be2 4032f2 \([0, 0, 0, -444, -880]\) \(810448/441\) \(5267275776\) \([2, 2]\) \(2048\) \(0.55626\)  
4032.be3 4032f1 \([0, 0, 0, -264, 1640]\) \(2725888/21\) \(15676416\) \([2]\) \(1024\) \(0.20969\) \(\Gamma_0(N)\)-optimal
4032.be4 4032f4 \([0, 0, 0, 1716, -6928]\) \(11696828/7203\) \(-344128684032\) \([2]\) \(4096\) \(0.90284\)