Learn more

Refine search


Results (1-50 of 128 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
4032.a1 4032.a \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.873903731$ $[0, 0, 0, -1452, -21040]$ \(y^2=x^3-1452x-21040\)
4032.a2 4032.a \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.747807462$ $[0, 0, 0, -12, -880]$ \(y^2=x^3-12x-880\)
4032.b1 4032.b \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3387, 59740]$ \(y^2=x^3-3387x+59740\)
4032.b2 4032.b \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 7548, 365920]$ \(y^2=x^3+7548x+365920\)
4032.c1 4032.c \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.513814715$ $[0, 0, 0, -3387, -59740]$ \(y^2=x^3-3387x-59740\)
4032.c2 4032.c \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.756907357$ $[0, 0, 0, 7548, -365920]$ \(y^2=x^3+7548x-365920\)
4032.d1 4032.d \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.526767882$ $[0, 0, 0, -1452, 21040]$ \(y^2=x^3-1452x+21040\)
4032.d2 4032.d \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.053535765$ $[0, 0, 0, -12, 880]$ \(y^2=x^3-12x+880\)
4032.e1 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -774156, -262174736]$ \(y^2=x^3-774156x-262174736\)
4032.e2 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -526476, 145621744]$ \(y^2=x^3-526476x+145621744\)
4032.e3 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -59916, -1997840]$ \(y^2=x^3-59916x-1997840\)
4032.e4 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -48396, -4094480]$ \(y^2=x^3-48396x-4094480\)
4032.e5 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2316, -94736]$ \(y^2=x^3-2316x-94736\)
4032.e6 4032.e \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 222324, -15432464]$ \(y^2=x^3+222324x-15432464\)
4032.f1 4032.f \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $2.085204075$ $[0, 0, 0, -8076, 279344]$ \(y^2=x^3-8076x+279344\)
4032.f2 4032.f \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.042602037$ $[0, 0, 0, -516, 4160]$ \(y^2=x^3-516x+4160\)
4032.f3 4032.f \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.085204075$ $[0, 0, 0, -111, -376]$ \(y^2=x^3-111x-376\)
4032.f4 4032.f \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.085204075$ $[0, 0, 0, 564, 19280]$ \(y^2=x^3+564x+19280\)
4032.g1 4032.g \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $5.132820664$ $[0, 0, 0, -3996, -97200]$ \(y^2=x^3-3996x-97200\)
4032.g2 4032.g \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.566410332$ $[0, 0, 0, -216, -1944]$ \(y^2=x^3-216x-1944\)
4032.h1 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -451596, 116808176]$ \(y^2=x^3-451596x+116808176\)
4032.h2 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -28236, 1823600]$ \(y^2=x^3-28236x+1823600\)
4032.h3 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -22476, -1289104]$ \(y^2=x^3-22476x-1289104\)
4032.h4 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -19596, 2960624]$ \(y^2=x^3-19596x+2960624\)
4032.h5 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2316, 9200]$ \(y^2=x^3-2316x+9200\)
4032.h6 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 564, 1136]$ \(y^2=x^3+564x+1136\)
4032.i1 4032.i \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -216, 1080]$ \(y^2=x^3-216x+1080\)
4032.i2 4032.i \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 324, 5616]$ \(y^2=x^3+324x+5616\)
4032.j1 4032.j \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -216, -1080]$ \(y^2=x^3-216x-1080\)
4032.j2 4032.j \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 324, -5616]$ \(y^2=x^3+324x-5616\)
4032.k1 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -451596, -116808176]$ \(y^2=x^3-451596x-116808176\)
4032.k2 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -28236, -1823600]$ \(y^2=x^3-28236x-1823600\)
4032.k3 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -22476, 1289104]$ \(y^2=x^3-22476x+1289104\)
4032.k4 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -19596, -2960624]$ \(y^2=x^3-19596x-2960624\)
4032.k5 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2316, -9200]$ \(y^2=x^3-2316x-9200\)
4032.k6 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 564, -1136]$ \(y^2=x^3+564x-1136\)
4032.l1 4032.l \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.348067749$ $[0, 0, 0, -3996, 97200]$ \(y^2=x^3-3996x+97200\)
4032.l2 4032.l \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.174033874$ $[0, 0, 0, -216, 1944]$ \(y^2=x^3-216x+1944\)
4032.m1 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -774156, 262174736]$ \(y^2=x^3-774156x+262174736\)
4032.m2 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -526476, -145621744]$ \(y^2=x^3-526476x-145621744\)
4032.m3 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -59916, 1997840]$ \(y^2=x^3-59916x+1997840\)
4032.m4 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -48396, 4094480]$ \(y^2=x^3-48396x+4094480\)
4032.m5 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2316, 94736]$ \(y^2=x^3-2316x+94736\)
4032.m6 4032.m \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 222324, 15432464]$ \(y^2=x^3+222324x+15432464\)
4032.n1 4032.n \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8076, -279344]$ \(y^2=x^3-8076x-279344\)
4032.n2 4032.n \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -516, -4160]$ \(y^2=x^3-516x-4160\)
4032.n3 4032.n \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -111, 376]$ \(y^2=x^3-111x+376\)
4032.n4 4032.n \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 564, -19280]$ \(y^2=x^3+564x-19280\)
4032.o1 4032.o \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -195, -1048]$ \(y^2=x^3-195x-1048\)
4032.o2 4032.o \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -180, -1216]$ \(y^2=x^3-180x-1216\)
Next   Download to