Properties

Label 4032.t
Number of curves $4$
Conductor $4032$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4032.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4032.t do not have complex multiplication.

Modular form 4032.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} + 6 q^{11} - 2 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4032.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.t1 4032bb4 \([0, 0, 0, -65820, -6499568]\) \(2640279346000/3087\) \(36870930432\) \([2]\) \(9216\) \(1.3107\)  
4032.t2 4032bb3 \([0, 0, 0, -4080, -103304]\) \(-10061824000/352947\) \(-263473523712\) \([2]\) \(4608\) \(0.96412\)  
4032.t3 4032bb2 \([0, 0, 0, -1020, -4016]\) \(9826000/5103\) \(60949905408\) \([2]\) \(3072\) \(0.76138\)  
4032.t4 4032bb1 \([0, 0, 0, 240, -488]\) \(2048000/1323\) \(-987614208\) \([2]\) \(1536\) \(0.41481\) \(\Gamma_0(N)\)-optimal