Properties

Label 3990.l
Number of curves $4$
Conductor $3990$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3990.l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3990.l do not have complex multiplication.

Modular form 3990.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3990.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3990.l1 3990l4 \([1, 0, 1, -1774179, 909437302]\) \(617611911727813844500009/1197723879765000\) \(1197723879765000\) \([2]\) \(64512\) \(2.1467\)  
3990.l2 3990l3 \([1, 0, 1, -298259, -44281834]\) \(2934284984699764805929/851931751022747640\) \(851931751022747640\) \([2]\) \(64512\) \(2.1467\)  
3990.l3 3990l2 \([1, 0, 1, -112059, 13887046]\) \(155617476551393929129/6633105589454400\) \(6633105589454400\) \([2, 2]\) \(32256\) \(1.8001\)  
3990.l4 3990l1 \([1, 0, 1, 3461, 810182]\) \(4586790226340951/286015269335040\) \(-286015269335040\) \([2]\) \(16128\) \(1.4535\) \(\Gamma_0(N)\)-optimal