Properties

Label 398400ix
Number of curves $1$
Conductor $398400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ix1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 398400ix1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(83\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 398400ix do not have complex multiplication.

Modular form 398400.2.a.ix

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} + q^{9} - 3 q^{11} - 6 q^{13} + 4 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 398400ix

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
398400.ix1 398400ix1 \([0, 1, 0, -13633, 1848863]\) \(-68417929/322704\) \(-1321795584000000\) \([]\) \(2150400\) \(1.5861\) \(\Gamma_0(N)\)-optimal