Properties

Label 39780.j
Number of curves $2$
Conductor $39780$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 39780.j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 39780.j do not have complex multiplication.

Modular form 39780.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} + 2 q^{11} - q^{13} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 39780.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
39780.j1 39780n1 \([0, 0, 0, -22158588, 26660395037]\) \(103157889656032577929216/33372791198022770325\) \(389260236533737593070800\) \([2]\) \(3932160\) \(3.2299\) \(\Gamma_0(N)\)-optimal
39780.j2 39780n2 \([0, 0, 0, 63167217, 182311728518]\) \(149359017613560984774704/163373427681970325625\) \(-30489402567720030049440000\) \([2]\) \(7864320\) \(3.5765\)