Show commands: SageMath
Rank
The elliptic curves in class 39600dt have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 39600dt do not have complex multiplication.Modular form 39600.2.a.dt
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 39600dt
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
39600.cp6 | 39600dt1 | \([0, 0, 0, 917925, 32170250]\) | \(1833318007919/1070530560\) | \(-49946673807360000000\) | \([2]\) | \(884736\) | \(2.4692\) | \(\Gamma_0(N)\)-optimal |
39600.cp5 | 39600dt2 | \([0, 0, 0, -3690075, 257962250]\) | \(119102750067601/68309049600\) | \(3187027018137600000000\) | \([2, 2]\) | \(1769472\) | \(2.8158\) | |
39600.cp3 | 39600dt3 | \([0, 0, 0, -38538075, -91705909750]\) | \(135670761487282321/643043610000\) | \(30001842668160000000000\) | \([2, 2]\) | \(3538944\) | \(3.1624\) | |
39600.cp2 | 39600dt4 | \([0, 0, 0, -42570075, 106672522250]\) | \(182864522286982801/463015182960\) | \(21602436376181760000000\) | \([4]\) | \(3538944\) | \(3.1624\) | |
39600.cp4 | 39600dt5 | \([0, 0, 0, -18738075, -185815309750]\) | \(-15595206456730321/310672490129100\) | \(-14494735699463289600000000\) | \([2]\) | \(7077888\) | \(3.5089\) | |
39600.cp1 | 39600dt6 | \([0, 0, 0, -615906075, -5883284317750]\) | \(553808571467029327441/12529687500\) | \(584585100000000000000\) | \([2]\) | \(7077888\) | \(3.5089\) |