Properties

Label 394944.x
Number of curves $4$
Conductor $394944$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 394944.x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 394944.x do not have complex multiplication.

Modular form 394944.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - 2 q^{13} + 2 q^{15} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 394944.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
394944.x1 394944x3 \([0, -1, 0, -1409569, 642302113]\) \(666940371553/2756193\) \(1279987293165453312\) \([2]\) \(7864320\) \(2.3297\)  
394944.x2 394944x2 \([0, -1, 0, -131809, -922271]\) \(545338513/314721\) \(146157718596747264\) \([2, 2]\) \(3932160\) \(1.9832\)  
394944.x3 394944x1 \([0, -1, 0, -93089, -10873311]\) \(192100033/561\) \(260530692685824\) \([2]\) \(1966080\) \(1.6366\) \(\Gamma_0(N)\)-optimal
394944.x4 394944x4 \([0, -1, 0, 526431, -7899615]\) \(34741712447/20160657\) \(-9362691503050457088\) \([2]\) \(7864320\) \(2.3297\)