Properties

Label 390402c
Number of curves $4$
Conductor $390402$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390402c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(23\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390402c do not have complex multiplication.

Modular form 390402.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - 4 q^{7} - q^{8} + 2 q^{10} - 4 q^{11} + 2 q^{13} + 4 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 390402c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390402.c3 390402c1 \([1, -1, 0, -42948, 3214080]\) \(81182737/5904\) \(637148834830224\) \([2]\) \(2433024\) \(1.5870\) \(\Gamma_0(N)\)-optimal
390402.c2 390402c2 \([1, -1, 0, -138168, -15925140]\) \(2703045457/544644\) \(58776980013088164\) \([2, 2]\) \(4866048\) \(1.9336\)  
390402.c4 390402c3 \([1, -1, 0, 290322, -95367186]\) \(25076571983/50863698\) \(-5489116855666733538\) \([2]\) \(9732096\) \(2.2802\)  
390402.c1 390402c4 \([1, -1, 0, -2090178, -1162535814]\) \(9357915116017/538002\) \(58060187573904162\) \([2]\) \(9732096\) \(2.2802\)