Show commands: SageMath
Rank
The elliptic curves in class 390390y have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||
Complex multiplication
The elliptic curves in class 390390y do not have complex multiplication.Modular form 390390.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 390390y
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 390390.y4 | 390390y1 | \([1, 1, 0, -257323797, -4458583836819]\) | \(-390394287570401650575649/1553162059549900800000\) | \(-7496816607493997130547200000\) | \([2]\) | \(309657600\) | \(4.0341\) | \(\Gamma_0(N)\)-optimal |
| 390390.y3 | 390390y2 | \([1, 1, 0, -5934425877, -175710638920851]\) | \(4788502600127122071579248929/7954695558810000000000\) | \(38395796115524137290000000000\) | \([2, 2]\) | \(619315200\) | \(4.3806\) | |
| 390390.y2 | 390390y3 | \([1, 1, 0, -7789559157, -56641877557299]\) | \(10829346205367046227129003809/5979872213745117187500000\) | \(28863701020154855346679687500000\) | \([2]\) | \(1238630400\) | \(4.7272\) | |
| 390390.y1 | 390390y4 | \([1, 1, 0, -94912925877, -11254797383620851]\) | \(19590236683225255317943875248929/54195348396489300000\) | \(261590595398310121643700000\) | \([2]\) | \(1238630400\) | \(4.7272\) |