Properties

Label 390390.dj
Number of curves $4$
Conductor $390390$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390390.dj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390390.dj do not have complex multiplication.

Modular form 390390.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - q^{14} - q^{15} + q^{16} + 6 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 390390.dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390390.dj1 390390dj3 \([1, 1, 1, -2059015, 1131285605]\) \(200005594092187129/1027287538200\) \(4958520734971603800\) \([2]\) \(11796480\) \(2.4333\)  
390390.dj2 390390dj2 \([1, 1, 1, -200015, -4191595]\) \(183337554283129/104587560000\) \(504824175896040000\) \([2, 2]\) \(5898240\) \(2.0867\)  
390390.dj3 390390dj1 \([1, 1, 1, -145935, -21475563]\) \(71210194441849/165580800\) \(799226895667200\) \([2]\) \(2949120\) \(1.7401\) \(\Gamma_0(N)\)-optimal
390390.dj4 390390dj4 \([1, 1, 1, 793705, -32413243]\) \(11456208593737991/6725709375000\) \(-32463714542634375000\) \([2]\) \(11796480\) \(2.4333\)