Show commands: SageMath
Rank
The elliptic curves in class 390390.dj have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||
Complex multiplication
The elliptic curves in class 390390.dj do not have complex multiplication.Modular form 390390.2.a.dj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 390390.dj
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 390390.dj1 | 390390dj3 | \([1, 1, 1, -2059015, 1131285605]\) | \(200005594092187129/1027287538200\) | \(4958520734971603800\) | \([2]\) | \(11796480\) | \(2.4333\) | |
| 390390.dj2 | 390390dj2 | \([1, 1, 1, -200015, -4191595]\) | \(183337554283129/104587560000\) | \(504824175896040000\) | \([2, 2]\) | \(5898240\) | \(2.0867\) | |
| 390390.dj3 | 390390dj1 | \([1, 1, 1, -145935, -21475563]\) | \(71210194441849/165580800\) | \(799226895667200\) | \([2]\) | \(2949120\) | \(1.7401\) | \(\Gamma_0(N)\)-optimal |
| 390390.dj4 | 390390dj4 | \([1, 1, 1, 793705, -32413243]\) | \(11456208593737991/6725709375000\) | \(-32463714542634375000\) | \([2]\) | \(11796480\) | \(2.4333\) |