Properties

Label 3900.j
Number of curves $1$
Conductor $3900$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3900.j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3900.j do not have complex multiplication.

Modular form 3900.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3900.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3900.j1 3900l1 \([0, 1, 0, -1515333, -730668537]\) \(-769623354048512/15247889631\) \(-7623944815500000000\) \([]\) \(84000\) \(2.4160\) \(\Gamma_0(N)\)-optimal