Properties

Label 38720.da
Number of curves $4$
Conductor $38720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("da1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38720.da have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38720.da do not have complex multiplication.

Modular form 38720.2.a.da

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + 4 q^{7} + q^{9} - 4 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38720.da

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38720.da1 38720q4 \([0, -1, 0, -3436561, 2453222961]\) \(154639330142416/33275\) \(965815374233600\) \([2]\) \(829440\) \(2.2600\)  
38720.da2 38720q3 \([0, -1, 0, -215541, 38102165]\) \(610462990336/8857805\) \(16068753288811520\) \([2]\) \(414720\) \(1.9134\)  
38720.da3 38720q2 \([0, -1, 0, -48561, 2343761]\) \(436334416/171875\) \(4988715776000000\) \([2]\) \(276480\) \(1.7107\)  
38720.da4 38720q1 \([0, -1, 0, -21941, -1217995]\) \(643956736/15125\) \(27437936768000\) \([2]\) \(138240\) \(1.3641\) \(\Gamma_0(N)\)-optimal