Properties

Label 383040.ee
Number of curves $4$
Conductor $383040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ee1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 383040.ee have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 383040.ee do not have complex multiplication.

Modular form 383040.2.a.ee

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 4 q^{11} + 2 q^{13} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 383040.ee

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
383040.ee1 383040ee3 \([0, 0, 0, -1021926828, 12574105119952]\) \(617611911727813844500009/1197723879765000\) \(228888597849357680640000\) \([2]\) \(99090432\) \(3.7357\)  
383040.ee2 383040ee4 \([0, 0, 0, -171796908, -611808475952]\) \(2934284984699764805929/851931751022747640\) \(162806692969338117700976640\) \([2]\) \(99090432\) \(3.7357\)  
383040.ee3 383040ee2 \([0, 0, 0, -64545708, 192103618768]\) \(155617476551393929129/6633105589454400\) \(1267606218266970056294400\) \([2, 2]\) \(49545216\) \(3.3891\)  
383040.ee4 383040ee1 \([0, 0, 0, 1993812, 11195971792]\) \(4586790226340951/286015269335040\) \(-54658369151367685079040\) \([2]\) \(24772608\) \(3.0426\) \(\Gamma_0(N)\)-optimal